23 research outputs found

    Sensor-Based Reactive Navigation in Unknown Convex Sphere Worlds

    Get PDF
    We construct a sensor-based feedback law that provably solves the real-time collision-free robot navigation problem in a compact convex Euclidean subset cluttered with unknown but sufficiently separated and strongly convex obstacles. Our algorithm introduces a novel use of separating hyperplanes for identifying the robot’s local obstacle-free convex neighborhood, affording a reactive (online-computed) continuous and piecewise smooth closed-loop vector field whose smooth flow brings almost all configurations in the robot’s free space to a designated goal location, with the guarantee of no collisions along the way. Specialized attention to planar navigable environments yields a necessary and sufficient condition on convex obstacles for almost global navigation towards any goal location in the environment. We further extend these provable properties of the planar setting to practically motivated limited range, isotropic and anisotropic sensing models, and the nonholonomically constrained kinematics of the standard differential drive vehicle. We conclude with numerical and experimental evidence demonstrating the effectiveness of the proposed sensory feedback motion planner

    Sensor-Based Reactive Navigation in Unknown Convex Sphere Worlds

    Get PDF
    We construct a sensor-based feedback law that provably solves the real-time collision-free robot navigation problem in a compact convex Euclidean subset cluttered with unknown but sufficiently separated and strongly convex obstacles. Our algorithm introduces a novel use of separating hyperplanes for identifying the robot’s local obstacle-free convex neighborhood, affording a reactive (online-computed) piecewise smooth and continuous closed-loop vector field whose smooth flow brings almost all configurations in the robot’s free space to a designated goal location, with the guarantee of no collisions along the way. We further extend these provable properties to practically motivated limited range sensing models

    Joint Exploration of Local Metrics and Geometry in Sampling-based Planning

    Get PDF
    This thesis addresses how the local geometry of the workspace around a system state can be combined with local metrics describing system dynamics to improve the connectivity of the graph produced by a sampling-based planner over a fixed number of configurations. This development is achieved through generalization of the concept of the local free space to inner products other than the Euclidean inner product. This new structure allows for naturally combining the local free space construction with a locally applicable metric. The combination of the local free space with two specific metrics is explored in this work. The first metric is the quadratic cost-to-go function defined by a linear quadratic regulator, which captures the local behavior of the dynamical system. The second metric is the Mahalanobis distance for a belief state in a belief space planner. Belief space planners reason over distributions of states, called belief states, to include modeled uncertainty in the planning process. The Mahalanobis distances metric for a given belief state can be exploited to include notions of risk in local free space construction. Numerical simulations are provided to demonstrate the improved connectivity of the graph generated by a sampling-based planner using these concepts

    Safe and Quasi-Optimal Autonomous Navigation in Environments with Convex Obstacles

    Full text link
    We propose a continuous feedback control strategy that steers a point-mass vehicle safely to a destination, in a quasi-optimal manner, in sphere worlds. The main idea consists in avoiding each obstacle via the shortest path within the cone enclosing the obstacle and moving straight toward the target when the vehicle has a clear line of sight to the target location. In particular, almost global asymptotic stability of the target location is achieved in two-dimensional (2D) environments under a particular assumption on the obstacles configuration. We also propose a reactive (sensor-based) approach, suitable for real-time implementations in a priori unknown 2D environments with sufficiently curved convex obstacles, guaranteeing almost global asymptotic stability of the target location. Simulation results are presented to illustrate the effectiveness of the proposed approach.Comment: arXiv admin note: substantial text overlap with arXiv:2302.1230
    corecore