2 research outputs found

    Influence Analysis towards Big Social Data

    Get PDF
    Large scale social data from online social networks, instant messaging applications, and wearable devices have seen an exponential growth in a number of users and activities recently. The rapid proliferation of social data provides rich information and infinite possibilities for us to understand and analyze the complex inherent mechanism which governs the evolution of the new technology age. Influence, as a natural product of information diffusion (or propagation), which represents the change in an individual’s thoughts, attitudes, and behaviors resulting from interaction with others, is one of the fundamental processes in social worlds. Therefore, influence analysis occupies a very prominent place in social related data analysis, theory, model, and algorithms. In this dissertation, we study the influence analysis under the scenario of big social data. Firstly, we investigate the uncertainty of influence relationship among the social network. A novel sampling scheme is proposed which enables the development of an efficient algorithm to measure uncertainty. Considering the practicality of neighborhood relationship in real social data, a framework is introduced to transform the uncertain networks into deterministic weight networks where the weight on edges can be measured as Jaccard-like index. Secondly, focusing on the dynamic of social data, a practical framework is proposed by only probing partial communities to explore the real changes of a social network data. Our probing framework minimizes the possible difference between the observed topology and the actual network through several representative communities. We also propose an algorithm that takes full advantage of our divide-and-conquer strategy which reduces the computational overhead. Thirdly, if let the number of users who are influenced be the depth of propagation and the area covered by influenced users be the breadth, most of the research results are only focused on the influence depth instead of the influence breadth. Timeliness, acceptance ratio, and breadth are three important factors that significantly affect the result of influence maximization in reality, but they are neglected by researchers in most of time. To fill the gap, a novel algorithm that incorporates time delay for timeliness, opportunistic selection for acceptance ratio, and broad diffusion for influence breadth has been investigated. In our model, the breadth of influence is measured by the number of covered communities, and the tradeoff between depth and breadth of influence could be balanced by a specific parameter. Furthermore, the problem of privacy preserved influence maximization in both physical location network and online social network was addressed. We merge both the sensed location information collected from cyber-physical world and relationship information gathered from online social network into a unified framework with a comprehensive model. Then we propose the resolution for influence maximization problem with an efficient algorithm. At the same time, a privacy-preserving mechanism are proposed to protect the cyber physical location and link information from the application aspect. Last but not least, to address the challenge of large-scale data, we take the lead in designing an efficient influence maximization framework based on two new models which incorporate the dynamism of networks with consideration of time constraint during the influence spreading process in practice. All proposed problems and models of influence analysis have been empirically studied and verified by different, large-scale, real-world social data in this dissertation

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice
    corecore