97,543 research outputs found
Poster Abstract: Opportunistic RPL
Sensor nodes constituting Wireless Sensor Networks (WSN) are often battery-
operated and have limited resources. To save energy, nodes sleep most of the
time, and wake up periodically to handle communication. Such radio duty cycling
poses a basic trade-off between energy and latency.
In previous work, we have shown that opportunistic routing is an efficient way
to achieve low-latency yet energy efficient data collection in WSN (ORW [3]).
In this paper, we extend this approach to the context of low-power IP networks,
where nodes need to be addressed individually and where traffic patterns are
irregular. We present ORPL, an opportunistic extension of RPL, the stan-
dard, state-of-the-art routing protocol for low-power IP networks. We discuss
our preliminary results obtained with Contiki in a 137-node testbed
A USB3.0 FPGA Event-based Filtering and Tracking Framework for Dynamic Vision Sensors
Dynamic vision sensors (DVS) are frame-free sensors
with an asynchronous variable-rate output that is ideal for hard
real-time dynamic vision applications under power and latency
constraints. Post-processing of the digital sensor output can
reduce sensor noise, extract low level features, and track objects
using simple algorithms that have previously been implemented
in software. In this paper we present an FPGA-based framework
for event-based processing that allows uncorrelated-event noise
removal and real-time tracking of multiple objects, with dynamic
capabilities to adapt itself to fast or slow and large or small
objects. This framework uses a new hardware platform based on
a Lattice FPGA which filters the sensor output and which then
transmits the results through a super-speed Cypress FX3 USB
microcontroller interface to a host computer. The packets of
events and timestamps are transmitted to the host computer at
rates of 10 Mega events per second. Experimental results are
presented that demonstrate a low latency of 10us for tracking
and computing the center of mass of a detected object.Ministerio de Economía y Competitividad TEC2012-37868-C04-0
Making High-Performance Embedded Instruments with Bela and Pure Data
This hands-on workshop introduces participants to Bela, an embedded platform for ultra-low latency audio and sensor processing.This hands-on workshop introduces participants to Bela, an embedded platform for ultra-low latency audio and sensor processing.This hands-on workshop introduces participants to Bela, an embedded platform for ultra-low latency audio and sensor processing.This hands-on workshop introduces participants to Bela, an embedded platform for ultra-low latency audio and sensor processing.This hands-on workshop introduces participants to Bela, an embedded platform for ultra-low latency audio and sensor processing.This hands-on workshop introduces participants to Bela, an embedded platform for ultra-low latency audio and sensor processing.This hands-on workshop introduces participants to Bela, an embedded platform for ultra-low latency audio and sensor processing.Bela is an embedded platform for ultra-low latency audio and sensor processing. We present here the hardware and software features of Bela with particular focus on its integration with Pure Data. Sensor inputs on Bela are sampled at audio rate, which opens to the possibility of doing signal processing using Pure Data’s audio-rate objects
Energy Efficient and Reliable Wireless Sensor Networks - An Extension to IEEE 802.15.4e
Collecting sensor data in industrial environments from up to some tenth of
battery powered sensor nodes with sampling rates up to 100Hz requires energy
aware protocols, which avoid collisions and long listening phases. The IEEE
802.15.4 standard focuses on energy aware wireless sensor networks (WSNs) and
the Task Group 4e has published an amendment to fulfill up to 100 sensor value
transmissions per second per sensor node (Low Latency Deterministic Network
(LLDN) mode) to satisfy demands of factory automation. To improve the
reliability of the data collection in the star topology of the LLDN mode, we
propose a relay strategy, which can be performed within the LLDN schedule.
Furthermore we propose an extension of the star topology to collect data from
two-hop sensor nodes. The proposed Retransmission Mode enables power savings in
the sensor node of more than 33%, while reducing the packet loss by up to 50%.
To reach this performance, an optimum spatial distribution is necessary, which
is discussed in detail
A QoS-Aware Routing Protocol for Real-time Applications in Wireless Sensor Networks
The paper presents a quality of service aware routing protocol which provides
low latency for high priority packets. Packets are differentiated based on
their priority by applying queuing theory. Low priority packets are transferred
through less energy paths. The sensor nodes interact with the pivot nodes which
in turn communicate with the sink node. This protocol can be applied in
monitoring context aware physical environments for critical applications.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1001.5339 by
other author
Poster Abstract: Practical issues in image acquisition and transmission over wireless sensor network
Multimedia data have become an important objective in
wireless sensor networks. Due to the node resource constraints
(energy consumption, memory capacity, network
latency and throughput) the incorporation of image sensor
at the nodes is currently a challenge.
In this paper, we study different node architectures,
evaluating processing time, energy consumption, image
quality and data delivery issues. The study shows that
a specialized image co-processor is an optimal solutionJUnta de Andalucía P07-TIC-0247
Decentralized mobility models for data collection in wireless sensor networks
Controlled mobility in wireless sensor networks provides many benefits towards enhancing the network performance and prolonging its lifetime. Mobile elements, acting as mechanical data carriers, traverse the network collecting data using single-hop communication, instead of the more energy demanding multi-hop routing to the sink. Scaling up from single to multiple mobiles is based more on the mobility models and the coordination methodology rather than increasing the number of mobile elements in the network. This work addresses the problem of designing and coordinating decentralized mobile elements for scheduling data collection in wireless sensor networks, while preserving some performance measures, such as latency and amount of data collected. We propose two mobility models governing the behaviour of the mobile element, where the incoming data collection requests are scheduled to service according to bidding strategies to determine the winner element. Simulations are run to measure the performance of the proposed mobility models subject to the network size and the number of mobile elements.<br /
A sun sensor implemented with an asynchronous luminance vision sensor
A sun sensor implemented with a spiking pixel matrix is reported. It is the very first one based on an asynchronous event-based pixel array. A paradigm associated to classic digital sun sensors is solved with this approach. Only pixels illuminated by the sun light are readout. Hence, the output data flow is quite reduced. The computational load to resolve the sun position is quite low, comparing to prior sensors. Sensor's latency is in the order of milliseconds. The advantages over implementations with APS pixels are more reduced data flow, less latency, and higher dynamic range.Universidad de Cádiz PR2016-072Ministerio de Economía y Competitividad TEC2015-66878- C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035
Medium Access Control for Wireless Sensor Networks based on Impulse Radio Ultra Wideband
This paper describes a detailed performance evaluation of distributed Medium
Access Control (MAC) protocols for Wireless Sensor Networks based on Impulse
Radio Ultra Wideband (IR-UWB) Physical layer (PHY). Two main classes of Medium
Access Control protocol have been considered: Slotted and UnSlotted with
reliability. The reliability is based on Automatic Repeat ReQuest (ARQ). The
performance evaluation is performed using a complete Wireless Sensor Networks
(WSN) simulator built on the Global Mobile Information System Simulator
(GloMoSim). The optimal operating parameters are first discussed for IR-UWB in
terms of slot size, retransmission delay and the number of retransmission, then
a comparison between IR-UWB and other transmission techniques in terms of
reliability latency and power efficiency
- …
