313,126 research outputs found
Simulation study of traffic-sensor noise effects on utilization of traffic situation display for self-spacing task
The effect of traffic sensor noise on the ability of a pilot to perform an intrail spacing task was determined. The tests were conducted in a fixed base cockpit simulator configured as a current generation transport aircraft, with an electronic traffic display provided in the weather radarscope location. The true positions of the traffic were perturbed in both relative range and azimuth by random errors to simulate traffic sensor noise associated with an onboard sensor. The evaluation task involved simulated instrument approaches into a terminal area while maintaining self separation on a lead aircraft. Separation performance data and pilot subjective ratings and comments were obtained. The results of the separation data indicate that displayed traffic position errors, having standard deviation values up to 0.3-n.mi. range and 8 deg azimuth, had negligible effect on the spacing performance achieved by the pilots. Speed profiles of the lead aircraft, display of the lead aircraft groundspeed, and individual pilot techniques were found to significantly affect the mean spacing performance
Joint Design and Separation Principle for Opportunistic Spectrum Access in the Presence of Sensing Errors
We address the design of opportunistic spectrum access (OSA) strategies that
allow secondary users to independently search for and exploit instantaneous
spectrum availability. Integrated in the joint design are three basic
components: a spectrum sensor that identifies spectrum opportunities, a sensing
strategy that determines which channels in the spectrum to sense, and an access
strategy that decides whether to access based on imperfect sensing outcomes.
We formulate the joint PHY-MAC design of OSA as a constrained partially
observable Markov decision process (POMDP). Constrained POMDPs generally
require randomized policies to achieve optimality, which are often intractable.
By exploiting the rich structure of the underlying problem, we establish a
separation principle for the joint design of OSA. This separation principle
reveals the optimality of myopic policies for the design of the spectrum sensor
and the access strategy, leading to closed-form optimal solutions. Furthermore,
decoupling the design of the sensing strategy from that of the spectrum sensor
and the access strategy, the separation principle reduces the constrained POMDP
to an unconstrained one, which admits deterministic optimal policies. Numerical
examples are provided to study the design tradeoffs, the interaction between
the spectrum sensor and the sensing and access strategies, and the robustness
of the ensuing design to model mismatch.Comment: 43 pages, 10 figures, submitted to IEEE Transactions on Information
Theory in Feb. 200
Measurement of deep-subwavelength emitter separation in a waveguide-QED system
In the waveguide quantum electrodynamics (QED) system, emitter separation
plays an important role for its functionality. Here, we present a method to
measure the deep-subwavelength emitter separation in a waveguide-QED system. In
this method, we can also determine the number of emitters within one
diffraction-limited spot. In addition, we also show that ultrasmall emitter
separation change can be detected in this system which may then be used as a
waveguide-QED-based sensor to measure tiny local temperature/strain variation
IC-integrated flexible shear-stress sensor skin
This paper reports the successful development of the first IC-integrated flexible MEMS shear-stress sensor skin. The sensor skin is 1 cm wide, 2 cm long, and 70 /spl mu/m thick. It contains 16 shear-stress sensors, which are arranged in a 1-D array, with on-skin sensor bias, signal-conditioning, and multiplexing circuitry. We further demonstrated the application of the sensor skin by packaging it on a semicylindrical aluminum block and testing it in a subsonic wind tunnel. In our experiment, the sensor skin has successfully identified both the leading-edge flow separation and stagnation points with the on-skin circuitry. The integration of IC with MEMS sensor skin has significantly simplified implementation procedures and improved system reliability
The Accurate Measurement of a Micromechanical Force Using Force-Sensitive Capacitances
A sensor for the precise and accurate measurement of micromechanical forces is presented. The sensor is based on the capacitive detection of force-induced deflection of a microstructure and integrated charge readout. The mechanical performance of the sensor is evaluated and verified with experiments. The structure has been designed to enable the separation of the force-to-deflection and deflection measurements in order to result in a sensor structure in which the response is linear with force and little affected by fringe fields. The sensor is 0.25 mm2 in size and has a force range of 0.2 mN, a zero-force capacitance of 0.5 pF, a sensitivity of 1-5 fF/uN, and a resolution that corresponds to a capacitance variation of 2 f
Flow separation detector
An arrangement for sensing the fluid separation along a surface which employs a thermally insulating element having a continuous surface blending into and forming a part of the fluid flow surface is described. A sudden decrease in the temperature of the downstream sensor conductor and concomitant increase in the temperature of the upstream sensor conductor is an indication of the separation. When the temperatures are returned to the state achieved during normal flow, the indicator thereby indicates the normal, attached fluid flow. The conductors may be, for example, wires or thin films, and should be within the viscous sub-layer of the expected fluid flow. A single heater and several pairs of sensors and corresponding sensor conductors may be used to detect not only the fluid flow and the separation, but the direction of the fluid flow, over the fluid flow surface
Electron tunnel sensor technology
Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described
Method of forming a multiple layer dielectric and a hot film sensor therewith
The invention is a method of forming a multiple layer dielectric for use in a hot-film laminar separation sensor. The multiple layer dielectric substrate is formed by depositing a first layer of a thermoelastic polymer such as on an electrically conductive substrate such as the metal surface of a model to be tested under cryogenic conditions and high Reynolds numbers. Next, a second dielectric layer of fused silica is formed on the first dielectric layer of thermoplastic polymer. A resistive metal film is deposited on selected areas of the multiple layer dielectric substrate to form one or more hot-film sensor elements to which aluminum electrical circuits deposited upon the multiple layered dielectric substrate are connected
- …
