255 research outputs found

    Sensor selection via convex optimization,”

    Get PDF
    Abstract-We consider the problem of choosing a set of sensor measurements, from a set of possible or potential sensor measurements, that minimizes the error in estimating some parameters. Solving this problem by evaluating the performance for each of the possible choices of sensor measurements is not practical unless and are small. In this paper, we describe a heuristic, based on convex optimization, for approximately solving this problem. Our heuristic gives a subset selection as well as a bound on the best performance that can be achieved by any selection of sensor measurements. There is no guarantee that the gap between the performance of the chosen subset and the performance bound is always small; but numerical experiments suggest that the gap is small in many cases. Our heuristic method requires on the order of 3 operations; for = 1000 possible sensors, we can carry out sensor selection in a few seconds on a 2-GHz personal computer

    Sensor Selection and Random Field Reconstruction for Robust and Cost-effective Heterogeneous Weather Sensor Networks for the Developing World

    Full text link
    We address the two fundamental problems of spatial field reconstruction and sensor selection in heterogeneous sensor networks: (i) how to efficiently perform spatial field reconstruction based on measurements obtained simultaneously from networks with both high and low quality sensors; and (ii) how to perform query based sensor set selection with predictive MSE performance guarantee. For the first problem, we developed a low complexity algorithm based on the spatial best linear unbiased estimator (S-BLUE). Next, building on the S-BLUE, we address the second problem, and develop an efficient algorithm for query based sensor set selection with performance guarantee. Our algorithm is based on the Cross Entropy method which solves the combinatorial optimization problem in an efficient manner.Comment: Presented at NIPS 2017 Workshop on Machine Learning for the Developing Worl

    On Multi-Step Sensor Scheduling via Convex Optimization

    Full text link
    Effective sensor scheduling requires the consideration of long-term effects and thus optimization over long time horizons. Determining the optimal sensor schedule, however, is equivalent to solving a binary integer program, which is computationally demanding for long time horizons and many sensors. For linear Gaussian systems, two efficient multi-step sensor scheduling approaches are proposed in this paper. The first approach determines approximate but close to optimal sensor schedules via convex optimization. The second approach combines convex optimization with a \BB search for efficiently determining the optimal sensor schedule.Comment: 6 pages, appeared in the proceedings of the 2nd International Workshop on Cognitive Information Processing (CIP), Elba, Italy, June 201

    Dynamic Sensor Placement Based on Graph Sampling Theory

    Full text link
    In this paper, we consider a dynamic sensor placement problem where sensors can move within a network over time. Sensor placement problem aims to select M sensor positions from N candidates where M < N. Most existing methods assume that sensors are static, i.e., they do not move, however, many mobile sensors like drones, robots, and vehicles can change their positions over time. Moreover, underlying measurement conditions could also be changed that are difficult to cover the statically placed sensors. We tackle the problem by allowing the sensors to change their positions in their neighbors on the network. Based on a perspective of dictionary learning, we sequentially learn the dictionary from a pool of observed signals on the network based on graph sampling theory. Using the learned dictionary, we dynamically determine the sensor positions such that the non-observed signals on the network can be best recovered from the observations. Furthermore, sensor positions in each time slot can be optimized in a decentralized manner to reduce the calculation cost. In experiments, we validate the effectiveness of the proposed method via the mean squared error (MSE) of the reconstructed signals. The proposed dynamic sensor placement outperforms the existing static ones both in synthetic and real data
    corecore