11,482 research outputs found

    Finding Your Way Back: Comparing Path Odometry Algorithms for Assisted Return.

    Get PDF
    We present a comparative analysis of inertial-based odometry algorithms for the purpose of assisted return. An assisted return system facilitates backtracking of a path previously taken, and can be particularly useful for blind pedestrians. We present a new algorithm for path matching, and test it in simulated assisted return tasks with data from WeAllWalk, the only existing data set with inertial data recorded from blind walkers. We consider two odometry systems, one based on deep learning (RoNIN), and the second based on robust turn detection and step counting. Our results show that the best path matching results are obtained using the turns/steps odometry system

    Integration of Absolute Orientation Measurements in the KinectFusion Reconstruction pipeline

    Full text link
    In this paper, we show how absolute orientation measurements provided by low-cost but high-fidelity IMU sensors can be integrated into the KinectFusion pipeline. We show that integration improves both runtime, robustness and quality of the 3D reconstruction. In particular, we use this orientation data to seed and regularize the ICP registration technique. We also present a technique to filter the pairs of 3D matched points based on the distribution of their distances. This filter is implemented efficiently on the GPU. Estimating the distribution of the distances helps control the number of iterations necessary for the convergence of the ICP algorithm. Finally, we show experimental results that highlight improvements in robustness, a speed-up of almost 12%, and a gain in tracking quality of 53% for the ATE metric on the Freiburg benchmark.Comment: CVPR Workshop on Visual Odometry and Computer Vision Applications Based on Location Clues 201

    Real-Time Indoor Localization using Visual and Inertial Odometry

    Get PDF
    This project encompassed the design of a mobile, real-time localization device for use in an indoor environment. A system was designed and constructed using visual and inertial odometry methods to meet the project requirements. Stereoscopic image features were detected through a C++ Sobel filter implementation and matched. An inertial measurement unit (IMU) provided raw acceleration and rotation coordinates which were transformed into a global frame of reference. A Kalman filter produced motion approximations from the input data and transmitted the Kalman position state coordinates via a radio transceiver to a remote base station. This station used a graphical user interface to map the incoming coordinates

    Robust ego-localization using monocular visual odometry

    Get PDF

    Leveraging External Sensor Data for Enhanced Space Situational Awareness

    Get PDF
    Reliable Space Situational Awareness (SSA) is a recognized requirement in the current congested, contested, and competitive environment of space operations. A shortage of available sensors and reliable data sources are some current limiting factors for maintaining SSA. Unfortunately, cost constraints prohibit drastically increasing the sensor inventory. Alternative methods are sought to enhance current SSA, including utilizing non-traditional data sources (external sensors) to perform basic SSA catalog maintenance functions. Astronomical data, for example, routinely collects serendipitous satellite streaks in the course of observing deep space; but tactics, techniques, and procedures designed to glean useful information from those collects have yet to be rigorously developed. This work examines the feasibility and utility of performing ephemeris positional updates for a Resident Space Object (RSO) catalog using metric data obtained from RSO streaks gathered by astronomical telescopes. The focus of this work is on processing data from three possible streak categories: streaks that only enter, only exit, or cross completely through the astronomical image. Successful use of this data will aid in resolving uncorrelated tracks, space object identification, and threat detection. Incorporation of external data sources will also reduce the number of routine collects required by existing SSA sensors, freeing them up for more demanding tasks. The results clearly demonstrate that accurate orbital reconstruction can be performed using an RSO streak in a distorted image, without applying calibration frames and that partially bound streaks provide similar results to traditional data, with a mean degradation of 6:2% in right ascension and 42:69% in declination. The methodology developed can also be applied to dedicated SSA sensors to extract data from serendipitous streaks gathered while observing other RSOs
    • …
    corecore