553,320 research outputs found

    Exploring sensor data management

    Get PDF
    The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired and wireless networks has led to the prediction that `smart evironments' will emerge in the near future. The sensors in these environments collect detailed information about the situation people are in, which is used to enhance information-processing applications that are present on their mobile and `ambient' devices.\ud \ud Bridging the gap between sensor data and application information poses new requirements to data management. This report discusses what these requirements are and documents ongoing research that explores ways of thinking about data management suited to these new requirements: a more sophisticated control flow model, data models that incorporate time, and ways to deal with the uncertainty in sensor data

    Query management in a sensor environment

    Get PDF
    Traditional sensor network deployments consisted of fixed infrastructures and were relatively small in size. More and more, we see the deployment of ad-hoc sensor networks with heterogeneous devices on a larger scale, posing new challenges for device management and query processing. In this paper, we present our design and prototype implementation of XSense, an architecture supporting metadata and query services for an underlying large scale dynamic P2P sensor network. We cluster sensor devices into manageable groupings to optimise the query process and automatically locate appropriate clusters based on keyword abstraction from queries. We present experimental analysis to show the benefits of our approach and demonstrate improved query performance and scalability

    An Identity Based Key Management Scheme in Wireless Sensor Networks

    Full text link
    Pairwise key establishment is one of the fundamental security services in sensor networks which enables sensor nodes in a sensor network to communicate securely with each other using cryptographic techniques. It is not feasible to apply traditional public key management techniques in resource-constrained sensor nodes, and also because the sensor nodes are vulnerable to physical capture. In this paper, we introduce a new scheme called the identity based key pre-distribution using a pseudo random function (IBPRF), which has better trade-off between communication overhead, network connectivity and resilience against node capture compared to the other key pre-distribution schemes. Our scheme can be easily adapted in mobile sensor networks. This scheme supports the addition of new sensor nodes after the initial deployment and also works for any deployment topology. In addition, we propose an improved version of our scheme to support large sensor networks.Comment: 7 pages, Published in Proceedings of 4th Asian International Mobile Computing Conference (AMOC 2006), Kolkata, India, pp. 70-76, January 4-7, 200

    Collaborative Storage Management In Sensor Networks

    Full text link
    In this paper, we consider a class of sensor networks where the data is not required in real-time by an observer; for example, a sensor network monitoring a scientific phenomenon for later play back and analysis. In such networks, the data must be stored in the network. Thus, in addition to battery power, storage is a primary resource: the useful lifetime of the network is constrained by its ability to store the generated data samples. We explore the use of collaborative storage technique to efficiently manage data in storage constrained sensor networks. The proposed collaborative storage technique takes advantage of spatial correlation among the data collected by nearby sensors to significantly reduce the size of the data near the data sources. We show that the proposed approach provides significant savings in the size of the stored data vs. local buffering, allowing the network to run for a longer time without running out of storage space and reducing the amount of data that will eventually be relayed to the observer. In addition, collaborative storage performs load balancing of the available storage space if data generation rates are not uniform across sensors (as would be the case in an event driven sensor network), or if the available storage varies across the network.Comment: 13 pages, 7 figure

    Sensor Management for Tracking in Sensor Networks

    Full text link
    We study the problem of tracking an object moving through a network of wireless sensors. In order to conserve energy, the sensors may be put into a sleep mode with a timer that determines their sleep duration. It is assumed that an asleep sensor cannot be communicated with or woken up, and hence the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. Having sleeping sensors in the network could result in degraded tracking performance, therefore, there is a tradeoff between energy usage and tracking performance. We design sleeping policies that attempt to optimize this tradeoff and characterize their performance. As an extension to our previous work in this area [1], we consider generalized models for object movement, object sensing, and tracking cost. For discrete state spaces and continuous Gaussian observations, we derive a lower bound on the optimal energy-tracking tradeoff. It is shown that in the low tracking error regime, the generated policies approach the derived lower bound

    CODE: description language for wireless collaborating objects

    Get PDF
    This paper introduces CODE, a Description Language for Wireless Collaborating Objects (WCO), with the specific aim of enabling service management in smart environments. WCO extend the traditional model of wireless sensor networks by transferring additional intelligence and responsibility from the gateway level to the network. WCO are able to offer complex services based on cooperation among sensor nodes. CODE provides the vocabulary for describing the complex services offered by WCO. It enables description of services offered by groups, on-demand services, service interface and sub-services. The proposed methodology is based on XML, widely used for structured information exchange and collaboration. CODE can be directly implemented on the network gateway, while a lightweight binary version is stored and exchanged among sensor nodes. Experimental results show the feasibility and flexibility of using CODE as a basis for service management in WCO

    A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network

    Full text link
    Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and the network. One efficient way of power management is to control the power at which the nodes transmit. In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN)communication architecture is considered and the power control of sensor nodes based on the approach of game theory is formulated. The use of game theory has proliferated, with a broad range of applications in wireless sensor networking. Approaches from game theory can be used to optimize node level as well as network wide performance. The game here is categorized as an incomplete information game, in which the nodes do not have complete information about the strategies taken by other nodes. For virtual multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best utility, by consuming less power.Comment: 12 pages, 8 figure

    Optimal Energy Management Policies for Energy Harvesting Sensor Nodes

    Full text link
    We study a sensor node with an energy harvesting source. The generated energy can be stored in a buffer. The sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time. We obtain energy management policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue.We also compare performance of several easily implementable sub-optimal energy management policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay.Comment: Submitted to the IEEE Transactions on Wireless Communications; 22 pages with 10 figure
    corecore