6 research outputs found

    Privacy-preserving network analytics

    Full text link
    We develop a new privacy-preserving framework for a general class of financial network models, leveraging cryptographic principles from secure multiparty computation and decentralized systems. We show how aggregate-level network statistics required for stability assessment and stress testing can be derived from real data without any individual node revealing its private information to any outside party, be it other nodes in the network, or even a central agent. Our work bridges the gap between established theories of financial network contagion and systemic risk that assume agents have full network information and the real world where information sharing is hindered by privacy and security concerns. This paper was accepted by Agostino Capponi, finance. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2022.4582 .https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3680000Othe

    Secure Multi-Party Computation In Practice

    Get PDF
    Secure multi-party computation (MPC) is a cryptographic primitive for computing on private data. MPC provides strong privacy guarantees, but practical adoption requires high-quality application design, software development, and resource management. This dissertation aims to identify and reduce barriers to practical deployment of MPC applications. First, the dissertation evaluates the design, capabilities, and usability of eleven state-of-the-art MPC software frameworks. These frameworks are essential for prototyping MPC applications, but their qualities vary widely; the survey provides insight into their current abilities and limitations. A comprehensive online repository augments the survey, including complete build environments, sample programs, and additional documentation for each framework. Second, the dissertation applies these lessons in two practical applications of MPC. The first addresses algorithms for assessing stability in financial networks, traditionally designed in a full-information model with a central regulator or data aggregator. This case study describes principles to transform two such algorithms into data-oblivious versions and benchmark their execution under MPC using three frameworks. The second aims to enable unlinkability of payments made with blockchain-based cryptocurrencies. This study uses MPC in conjunction with other privacy techniques to achieve unlinkability in payment channels. Together, these studies illuminate the limitations of existing software, develop guidelines for transforming non-private algorithms into versions suitable for execution under MPC, and illustrate the current practical feasibility of MPC as a solution to a wide variety of applications
    corecore