18,331 research outputs found

    Testing collapse models with levitated nanoparticles: the detection challenge

    Get PDF
    We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic vacuum, and look for the conditions which allow for a stringent noninterferometric test of spontaneous collapse models. In particular we compare different possible techniques to detect the particle motion. Key conditions which need to be achieved are extremely low residual pressure and the ability to detect the particle at ultralow power. We compare three different detection approaches based respectively on a optical cavity, optical tweezer and a electrical readout, and for each one we assess advantages, drawbacks and technical challenges

    Analyzing the solutions of DEA through information visualization and data mining techniques: SmartDEA framework

    Get PDF
    Data envelopment analysis (DEA) has proven to be a useful tool for assessing efficiency or productivity of organizations, which is of vital practical importance in managerial decision making. DEA provides a significant amount of information from which analysts and managers derive insights and guidelines to promote their existing performances. Regarding to this fact, effective and methodologic analysis and interpretation of DEA solutions are very critical. The main objective of this study is then to develop a general decision support system (DSS) framework to analyze the solutions of basic DEA models. The paper formally shows how the solutions of DEA models should be structured so that these solutions can be examined and interpreted by analysts through information visualization and data mining techniques effectively. An innovative and convenient DEA solver, SmartDEA, is designed and developed in accordance with the proposed analysis framework. The developed software provides a DEA solution which is consistent with the framework and is ready-to-analyze with data mining tools, through a table-based structure. The developed framework is tested and applied in a real world project for benchmarking the vendors of a leading Turkish automotive company. The results show the effectiveness and the efficacy of the proposed framework

    Gravitomagnetism and gravitational waves

    Full text link
    After extensively reviewing general relativistic gravitomagnetism, both historically and phenomenologically, we review in detail the so-called magnetic components of gravitational waves (GWs), which have to be taken into account in the context of the total response functions of interferometers for GWs propagating from arbitrary directions. Following the more recent approaches of this important issue, the analysis of such magnetic components will be reviewed in both of standard General Theory of Relativity (GTR) and Scalar Tensor Gravity. Thus, we show in detail that such a magnetic component becomes particularly important in the high-frequency portion of the range of ground based interferometers for GWs which arises from the two different theories of gravity. Our reviewed results show that if one neglects the magnetic contribution to the gravitational field of a GW, approximately 15% of the potential observable signal could, in principle, be lost.Comment: To appear in the Special Issue of The Open Astronomy Journal "The Big Challenge of Gravitational Waves, a New Window into the Universe", Editors Christian Corda, Herman J. Mosquera Cuesta, Oswaldo Miranda and Theodore Simo
    • 

    corecore