7 research outputs found

    Semidefinite Relaxations for Stochastic Optimal Control Policies

    Full text link
    Recent results in the study of the Hamilton Jacobi Bellman (HJB) equation have led to the discovery of a formulation of the value function as a linear Partial Differential Equation (PDE) for stochastic nonlinear systems with a mild constraint on their disturbances. This has yielded promising directions for research in the planning and control of nonlinear systems. This work proposes a new method obtaining approximate solutions to these linear stochastic optimal control (SOC) problems. A candidate polynomial with variable coefficients is proposed as the solution to the SOC problem. A Sum of Squares (SOS) relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function.Comment: Preprint. Accepted to American Controls Conference (ACC) 2014 in Portland, Oregon. 7 pages, colo

    Domain Decomposition for Stochastic Optimal Control

    Full text link
    This work proposes a method for solving linear stochastic optimal control (SOC) problems using sum of squares and semidefinite programming. Previous work had used polynomial optimization to approximate the value function, requiring a high polynomial degree to capture local phenomena. To improve the scalability of the method to problems of interest, a domain decomposition scheme is presented. By using local approximations, lower degree polynomials become sufficient, and both local and global properties of the value function are captured. The domain of the problem is split into a non-overlapping partition, with added constraints ensuring C1C^1 continuity. The Alternating Direction Method of Multipliers (ADMM) is used to optimize over each domain in parallel and ensure convergence on the boundaries of the partitions. This results in improved conditioning of the problem and allows for much larger and more complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201

    Linear Hamilton Jacobi Bellman Equations in High Dimensions

    Get PDF
    The Hamilton Jacobi Bellman Equation (HJB) provides the globally optimal solution to large classes of control problems. Unfortunately, this generality comes at a price, the calculation of such solutions is typically intractible for systems with more than moderate state space size due to the curse of dimensionality. This work combines recent results in the structure of the HJB, and its reduction to a linear Partial Differential Equation (PDE), with methods based on low rank tensor representations, known as a separated representations, to address the curse of dimensionality. The result is an algorithm to solve optimal control problems which scales linearly with the number of states in a system, and is applicable to systems that are nonlinear with stochastic forcing in finite-horizon, average cost, and first-exit settings. The method is demonstrated on inverted pendulum, VTOL aircraft, and quadcopter models, with system dimension two, six, and twelve respectively.Comment: 8 pages. Accepted to CDC 201

    Suboptimal stabilizing controllers for linearly solvable system

    Get PDF
    This paper presents a novel method to synthesize stochastic control Lyapunov functions for a class of nonlinear, stochastic control systems. In this work, the classical nonlinear Hamilton-Jacobi-Bellman partial differential equation is transformed into a linear partial differential equation for a class of systems with a particular constraint on the stochastic disturbance. It is shown that this linear partial differential equation can be relaxed to a linear differential inclusion, allowing for approximating polynomial solutions to be generated using sum of squares programming. It is shown that the resulting solutions are stochastic control Lyapunov functions with a number of compelling properties. In particular, a-priori bounds on trajectory suboptimality are shown for these approximate value functions. The result is a technique whereby approximate solutions may be computed with non-increasing error via a hierarchy of semidefinite optimization problems
    corecore