32,092 research outputs found
Exposed faces of semidefinitely representable sets
A linear matrix inequality (LMI) is a condition stating that a symmetric
matrix whose entries are affine linear combinations of variables is positive
semidefinite. Motivated by the fact that diagonal LMIs define polyhedra, the
solution set of an LMI is called a spectrahedron. Linear images of spectrahedra
are called semidefinite representable sets. Part of the interest in
spectrahedra and semidefinite representable sets arises from the fact that one
can efficiently optimize linear functions on them by semidefinite programming,
like one can do on polyhedra by linear programming.
It is known that every face of a spectrahedron is exposed. This is also true
in the general context of rigidly convex sets. We study the same question for
semidefinite representable sets. Lasserre proposed a moment matrix method to
construct semidefinite representations for certain sets. Our main result is
that this method can only work if all faces of the considered set are exposed.
This necessary condition complements sufficient conditions recently proved by
Lasserre, Helton and Nie
Low-rank semidefinite programming for the MAX2SAT problem
This paper proposes a new algorithm for solving MAX2SAT problems based on
combining search methods with semidefinite programming approaches. Semidefinite
programming techniques are well-known as a theoretical tool for approximating
maximum satisfiability problems, but their application has traditionally been
very limited by their speed and randomized nature. Our approach overcomes this
difficult by using a recent approach to low-rank semidefinite programming,
specialized to work in an incremental fashion suitable for use in an exact
search algorithm. The method can be used both within complete or incomplete
solver, and we demonstrate on a variety of problems from recent competitions.
Our experiments show that the approach is faster (sometimes by orders of
magnitude) than existing state-of-the-art complete and incomplete solvers,
representing a substantial advance in search methods specialized for MAX2SAT
problems.Comment: Accepted at AAAI'19. The code can be found at
https://github.com/locuslab/mixsa
Definable Ellipsoid Method, Sums-of-Squares Proofs, and the Isomorphism Problem
The ellipsoid method is an algorithm that solves the (weak) feasibility and
linear optimization problems for convex sets by making oracle calls to their
(weak) separation problem. We observe that the previously known method for
showing that this reduction can be done in fixed-point logic with counting
(FPC) for linear and semidefinite programs applies to any family of explicitly
bounded convex sets. We use this observation to show that the exact feasibility
problem for semidefinite programs is expressible in the infinitary version of
FPC. As a corollary we get that, for the isomorphism problem, the
Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations
collapses to the Sherali-Adams linear programming hierarchy, up to a small loss
in the degree
Subsampling Algorithms for Semidefinite Programming
We derive a stochastic gradient algorithm for semidefinite optimization using
randomization techniques. The algorithm uses subsampling to reduce the
computational cost of each iteration and the subsampling ratio explicitly
controls granularity, i.e. the tradeoff between cost per iteration and total
number of iterations. Furthermore, the total computational cost is directly
proportional to the complexity (i.e. rank) of the solution. We study numerical
performance on some large-scale problems arising in statistical learning.Comment: Final version, to appear in Stochastic System
Adaptive Clustering through Semidefinite Programming
We analyze the clustering problem through a flexible probabilistic model that
aims to identify an optimal partition on the sample X 1 , ..., X n. We perform
exact clustering with high probability using a convex semidefinite estimator
that interprets as a corrected, relaxed version of K-means. The estimator is
analyzed through a non-asymptotic framework and showed to be optimal or
near-optimal in recovering the partition. Furthermore, its performances are
shown to be adaptive to the problem's effective dimension, as well as to K the
unknown number of groups in this partition. We illustrate the method's
performances in comparison to other classical clustering algorithms with
numerical experiments on simulated data
A Polynomial Optimization Approach to Constant Rebalanced Portfolio Selection
We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on semidefinite programming. Our algorithm can solve problems that can not be handled by any of known polynomial optimization solvers.Multi-period portfolio optimization;Polynomial optimization problem;Constant rebalancing;Semidefinite programming;Mean-variance criterion
- …
