7 research outputs found

    Semidefinite programming strong converse bounds for classical capacity

    Full text link
    © 2017 IEEE. We investigate the classical communication over quantum channels when assisted by no-signaling and positive-partial-transpose-preserving (PPT) codes, for which both the optimal success probability of a given transmission rate and the one-shot -error capacity are formalized as semidefinite programs (SDPs). Based on this, we obtain improved SDP finite blocklength converse bounds of general quantum channels for entanglement-assisted codes and unassisted codes. Furthermore, we derive two SDP strong converse bounds for the classical capacity of general quantum channels: for any code with a rate exceeding either of the two bounds of the channel, the success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bounds, we derive an improved upper bound on the classical capacity of the amplitude damping channel. We also establish the strong converse property for the classical and private capacities of a new class of quantum channels. We finally study the zero-error setting and provide efficiently computable upper bounds on the one-shot zero-error capacity of a general quantum channel

    Semidefinite programming converse bounds for quantum communication

    Full text link
    We derive several efficiently computable converse bounds for quantum communication over quantum channels in both the one-shot and asymptotic regime. First, we derive one-shot semidefinite programming (SDP) converse bounds on the amount of quantum information that can be transmitted over a single use of a quantum channel, which improve the previous bound from [Tomamichel/Berta/Renes, Nat. Commun. 7, 2016]. As applications, we study quantum communication over depolarizing channels and amplitude damping channels with finite resources. Second, we find an SDP strong converse bound for the quantum capacity of an arbitrary quantum channel, which means the fidelity of any sequence of codes with a rate exceeding this bound will vanish exponentially fast as the number of channel uses increases. Furthermore, we prove that the SDP strong converse bound improves the partial transposition bound introduced by Holevo and Werner. Third, we prove that this SDP strong converse bound is equal to the so-called max-Rains information, which is an analog to the Rains information introduced in [Tomamichel/Wilde/Winter, IEEE Trans. Inf. Theory 63:715, 2017]. Our SDP strong converse bound is weaker than the Rains information, but it is efficiently computable for general quantum channels.Comment: 17 pages, extended version of arXiv:1601.06888. v3 is closed to the published version, IEEE Transactions on Information Theory, 201

    Quantum Channel Simulation and the Channel's Smooth Max-Information

    Full text link
    © 2018 IEEE. We study the general framework of quantum channel simulation, that is, the ability of a quantum channel to simulate another one using different classes of codes. Our main results are as follows. First, we show that the minimum error of simulation under non-signalling assisted codes is efficiently computable via semidefinite programming. The cost of simulating a channel via noiseless quantum channels under non-signalling assisted codes can also be characterized as a semidefinite program. Second, we introduce the channel's smooth max-information, which can be seen as a one-shot generalization of the channel's mutual information. We show that the one-shot quantum simulation cost under non-signalling assisted codes is exactly equal to the channel's smooth max-information. Due to the quantum reverse Shannon theorem, the channel's smooth max-information converges to the channel's mutual information in the independent and identically distributed asymptotic limit. Together with earlier findings on the (activated) non-signalling assisted one-shot capacity of channels [Wang et al., arXiv:1709.05258], this suggest that the operational min- and max-type one-shot analogues of the channel's mutual information are the channel's hypothesis testing relative entropy and the channel's smooth max-information, respectively

    Fundamental limitations on distillation of quantum channel resources

    Full text link
    Quantum channels underlie the dynamics of quantum systems, but in many practical settings it is the channels themselves that require processing. We establish universal limitations on the processing of both quantum states and channels, expressed in the form of no-go theorems and quantitative bounds for the manipulation of general quantum channel resources under the most general transformation protocols. Focusing on the class of distillation tasks -- which can be understood either as the purification of noisy channels into unitary ones, or the extraction of state-based resources from channels -- we develop fundamental restrictions on the error incurred in such transformations and comprehensive lower bounds for the overhead of any distillation protocol. In the asymptotic setting, our results yield broadly applicable bounds for rates of distillation. We demonstrate our results through applications to fault-tolerant quantum computation, where we obtain state-of-the-art lower bounds for the overhead cost of magic state distillation, as well as to quantum communication, where we recover a number of strong converse bounds for quantum channel capacity.Comment: 15+25 pages, 4 figures. v3: close to published version (changes in presentation, title modified; main results unaffected). See also related work by Fang and Liu at arXiv:2010.1182

    Semidefinite Programming Strong Converse Bounds for Classical Capacity

    No full text
    corecore