214,865 research outputs found

    Tailoring ferromagnetic chalcopyrites

    Full text link
    If magnetic semiconductors are ever to find wide application in real spintronic devices, their magnetic and electronic properties will require tailoring in much the same way that band gaps are engineered in conventional semiconductors. Unfortunately, no systematic understanding yet exists of how, or even whether, properties such as Curie temperatures and band gaps are related in magnetic semiconductors. Here we explore theoretically these and other relationships within 64 members of a single materials class, the Mn-doped II-IV-V2 chalcopyrites, three of which are already known experimentally to be ferromagnetic semiconductors. Our first-principles results reveal a variation of magnetic properties across different materials that cannot be explained by either of the two dominant models of ferromagnetism in semiconductors. Based on our results for structural, electronic, and magnetic properties, we identify a small number of new stable chalcopyrites with excellent prospects for ferromagnetism.Comment: 6 pages with 4 figures, plus 3 supplementary figures; to appear in Nature Material

    Magnetic oxide semiconductors

    Full text link
    Magnetic oxide semiconductors, oxide semiconductors doped with transition metal elements, are one of the candidates for a high Curie temperature ferromagnetic semiconductor that is important to realize semiconductor spintronics at room temperature. We review in this paper recent progress of researches on various magnetic oxide semiconductors. The magnetization, magneto-optical effect, and magneto-transport such as anomalous Hall effect are examined from viewpoint of feasibility to evaluate the ferromagnetism. The ferromagnetism of Co-doped TiO2 and transition metal-doped ZnO is discussed.Comment: 26 pages, 5 tables, 6 figure

    Schottky-based band lineups for refractory semiconductors

    Get PDF
    An overview is presented of band alignments for small-lattice parameter, refractory semiconductors. The band alignments are estimated empirically through the use of available Schottky barrier height data, and are compared to theoretically predicted values. Results for tetrahedrally bonded semiconductors with lattice constant values in the range from C through ZnSe are presented. Based on the estimated band alignments and the recently demonstrated p-type dopability of GaN, we propose three novel heterojunction schemes which seek to address inherent difficulties in doping or electrical contact to wide-gap semiconductors such as ZnO, ZnSe, and ZnS

    Ferromagnetic semiconductors

    Full text link
    The current status and prospects of research on ferromagnetism in semiconductors are reviewed. The question of the origin of ferromagnetism in europium chalcogenides, chromium spinels and, particularly, in diluted magnetic semiconductors is addressed. The nature of electronic states derived from 3d of magnetic impurities is discussed in some details. Results of a quantitative comparison between experimental and theoretical results, notably for Mn-based III-V and II-VI compounds, are presented. This comparison demonstrates that the current theory of the exchange interactions mediated by holes in the valence band describes correctly the values of Curie temperatures T_C magnetic anisotropy, domain structure, and magnetic circular dichroism. On this basis, chemical trends are examined and show to lead to the prediction of semiconductor systems with T_C that may exceed room temperature, an expectation that are being confirmed by recent findings. Results for materials containing magnetic ions other than Mn are also presented emphasizing that the double exchange involving hoping through d states may operate in those systems.Comment: 18 pages, 8 figures; special issue of Semicon. Sci. Technol. on semiconductor spintronic
    • …
    corecore