2,800 research outputs found

    Limit cycle behavior of smart fluid dampers under closed loop control

    Get PDF
    Semiactive vibration dampers offer an attractive compromise between the simplicity and fail safety of passive devices, and the weight, cost, and complexity of fully active systems. In addition, the dissipative nature of semiactive dampers ensures they always remain stable under closed loop control, unlike their fully active counterparts, However undesirable limit cycle behavior remains a possibility, which is not always property considered during the controller design. Smart fluids provide an elegant means to produce semiactive damping, since their resistance to flow can be directly controlled by the application of an electric or magnetic field. However the nonlinear behavior of smart fluid dampers makes it difficult to design effective controllers, and so a wide variety of control strategies has been proposed in the literature. In general, this work has overlooked the possibility of undesirable limit cycle behavior under closed loop conditions. The aim of the present study is to demonstrate how the experimentally observed limit cycle behavior of smart dampers can be predicted and explained by appropriate nonlinear models. The study is based upon a previously developed feedback control strategy, but the techniques described are relevant to other forms of smart damper control

    Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective

    Get PDF
    In this paper we address the classical hybrid flow shop scheduling problem with makespan objective. As this problem is known to be NP-hard and a very common layout in real-life manufacturing scenarios, many studies have been proposed in the literature to solve it. These contributions use different solution representations of the feasible schedules, each one with its own advantages and disadvantages. Some of them do not guarantee that all feasible semiactive schedules are represented in the space of solutions –thus limiting in principle their effectiveness– but, on the other hand, these simpler solution representations possess clear advantages in terms of having consistent neighbourhoods with well-defined neighbourhood moves. Therefore, there is a trade-off between the solution space reduction and the ability to conduct an efficient search in this reduced solution space. This trade-off is determined by two aspects, i.e. the extent of the solution space reduction, and the quality of the schedules left aside by this solution space reduction. In this paper, we analyse the efficiency of the different solution representations employed in the literature for the problem. More specifically, we first establish the size of the space of semiactive schedules achieved by the different solution representations and, secondly, we address the issue of the quality of the schedules that can be achieved by these representations using the optimal solutions given by several MILP models and complete enumeration. The results obtained may contribute to design more efficient algorithms for the hybrid flow shop scheduling problem.Ministerio de Ciencia e Innovación DPI2016-80750-

    Nonlinear stochastic controllers for semiactive and regenerative structural systems, with guaranteed quadratic performance margins

    Get PDF
    In many applications of vibration control, the circumstances of the application impose constraints on the energy available for the actuation of control forces. Semiactive dampers (i.e., viscous dampers with controllable coefficients) constitute the simplest example of such actuation in structural control applications. Regenerative Force Actuation (RFA) networks are an extension of semiactive devices, in which mechanical energy is first converted to electrical energy, which is then dissipated in a controllable resistive network. A fairly general class of semiactive and regenerative systems can be characterized by a differential equation which is bilinear (i.e., linear in state, linear in control input, but nonlinear in both). This paper presents a general approach to bilinear feedback control system design for semiactive and regenerative systems, which is analytically guaranteed to out-perform optimal linear viscous damping in stationary stochastic response, under the familiar Quadratic Gaussian performance measure. The design for full-state feedback and for the more practical case of noise-corrupted and incomplete measurements (i.e., output feedback) are separately discussed. Variants of the theory are shown to exist for other quadratic performance measures, including risk-sensitive and multi-objective frameworks. An illustrative application to civil engineering is presented

    Vibration analysis and models of adjacent structures controlled by magnetorheological dampers

    Get PDF
    This paper deals with the vibration analysis of adjacent structures controlled by a magnetorheological (MR) damper and with the discussion of a numerical procedure for identification and definition of a reliable finite element model. The paper describes an extensive experimental campaign investigating the dynamic response, through shaking table tests, of a tridimensional four-story structure and a two-story structure connected by an MR device. Several base excitations and intensity levels are considered. The structureswere tested in nonconnected and connected configuration, with theMRdamper operating in passive or semiactivemode. Moreover, the paper illustrates a procedure for the structural identification and the definition of a reliable numerical model valid for adjacent structures connected by MR dampers. The procedure is applied in the original nonconnected configuration, which represents a linear system, and then in the connected configuration, which represents a nonlinear system due to theMR damper. In the end, the updated finite element model is reliable and suitable for all the considered configurations and the mass, damping, and stiffness matrices are derived.The experimental and numerical responses are compared and the results confirmthe effectiveness of the identification procedure and the validation of the finite element model

    Identification and Semiactive Control of Smart Structures Equipped with Magnetorheological Actuators

    Get PDF
    This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithm

    Anonymous transmission in a noisy quantum network using the W state

    Full text link
    We consider the task of anonymously transmitting a quantum message in a network. We present a protocol that accomplishes this task using the W state and we analyze its performance in a quantum network where some form of noise is present. We then compare the performance of our protocol with some of the existing protocols developed for the task of anonymous transmission. We show that, in many regimes, our protocol tolerates more noise and achieves higher fidelities of the transmitted quantum message than the other ones. Furthermore, we demonstrate that our protocol tolerates one non-responsive node. We prove the security of our protocol in a semi-active adversary scenario, meaning that we consider an active adversary and a trusted source.Comment: 9 + 12 pages, 9 figure

    Equivalent air spring suspension model for quarter-passive model of passenger vehicles

    Get PDF
    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Skyhook surface sliding mode control on semi-active vehicle suspension systems for ride comfort enhancement

    Get PDF
    A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle semi-active suspension system was given, which focused on the passenger’s ride comfort perform-ance. A simulation with the given initial conditions has been devised in MATLAB/SIMULINK. The simula-tion results were showing that there was an enhanced level of ride comfort for the vehicle semi-active sus-pension system with the skyhook surface sliding mode controller

    Hysteretic active control of base-isolated buildings

    Get PDF
    In this work, an active control law for base-isolated buildings is proposed. The crucial idea comes from the observation that passive base-isolation systems are hysteretic. Thus, an hysteretic active control strategy is designed in a way that the control force is smooth and limited by a prescribed bound. Furthermore, given a specific actuator with a physically limited maximum force and maximum rate of change, it is proven that the design parameters in the contributed control law can be chosen such that the control signal inherently satisfies the actuator constraints. Eight different ground-acceleration time-history records and a model of a 5-story building are used to study and compare the performance of a passive pure friction damper alone, with the addition of the proposed active control. Numerical analysis demonstrates that our control strategy effectively mitigates base displacement and shear without an increase in superstructure drift or acceleration.Peer ReviewedPostprint (author's final draft
    corecore