2 research outputs found

    Semi-supervised Multimodal Hashing

    Full text link
    Retrieving nearest neighbors across correlated data in multiple modalities, such as image-text pairs on Facebook and video-tag pairs on YouTube, has become a challenging task due to the huge amount of data. Multimodal hashing methods that embed data into binary codes can boost the retrieving speed and reduce storage requirement. As unsupervised multimodal hashing methods are usually inferior to supervised ones, while the supervised ones requires too much manually labeled data, the proposed method in this paper utilizes a part of labels to design a semi-supervised multimodal hashing method. It first computes the transformation matrices for data matrices and label matrix. Then, with these transformation matrices, fuzzy logic is introduced to estimate a label matrix for unlabeled data. Finally, it uses the estimated label matrix to learn hashing functions for data in each modality to generate a unified binary code matrix. Experiments show that the proposed semi-supervised method with 50% labels can get a medium performance among the compared supervised ones and achieve an approximate performance to the best supervised method with 90% labels. With only 10% labels, the proposed method can still compete with the worst compared supervised one

    Label Prediction Framework for Semi-Supervised Cross-Modal Retrieval

    Full text link
    Cross-modal data matching refers to retrieval of data from one modality, when given a query from another modality. In general, supervised algorithms achieve better retrieval performance compared to their unsupervised counterpart, as they can learn better representative features by leveraging the available label information. However, this comes at the cost of requiring huge amount of labeled examples, which may not always be available. In this work, we propose a novel framework in a semi-supervised setting, which can predict the labels of the unlabeled data using complementary information from different modalities. The proposed framework can be used as an add-on with any baseline crossmodal algorithm to give significant performance improvement, even in case of limited labeled data. Finally, we analyze the challenging scenario where the unlabeled examples can even come from classes not in the training data and evaluate the performance of our algorithm under such setting. Extensive evaluation using several baseline algorithms across three different datasets shows the effectiveness of our label prediction framework.Comment: 12 pages, 3 tables, 2 figures, 1 algorithm flowchar
    corecore