2 research outputs found

    Semi-supervised representation learning via dual autoencoders for domain adaptation

    Full text link
    Domain adaptation aims to exploit the knowledge in source domain to promote the learning tasks in target domain, which plays a critical role in real-world applications. Recently, lots of deep learning approaches based on autoencoders have achieved a significance performance in domain adaptation. However, most existing methods focus on minimizing the distribution divergence by putting the source and target data together to learn global feature representations, while they do not consider the local relationship between instances in the same category from different domains. To address this problem, we propose a novel Semi-Supervised Representation Learning framework via Dual Autoencoders for domain adaptation, named SSRLDA. More specifically, we extract richer feature representations by learning the global and local feature representations simultaneously using two novel autoencoders, which are referred to as marginalized denoising autoencoder with adaptation distribution (MDAad) and multi-class marginalized denoising autoencoder (MMDA) respectively. Meanwhile, we make full use of label information to optimize feature representations. Experimental results show that our proposed approach outperforms several state-of-the-art baseline methods.Comment: This paper has been accepted by the journal of KNOWLEDGE-BASED SYSTEMS (KBS) 201

    Learning causal representations for robust domain adaptation

    Full text link
    Domain adaptation solves the learning problem in a target domain by leveraging the knowledge in a relevant source domain. While remarkable advances have been made, almost all existing domain adaptation methods heavily require large amounts of unlabeled target domain data for learning domain invariant representations to achieve good generalizability on the target domain. In fact, in many real-world applications, target domain data may not always be available. In this paper, we study the cases where at the training phase the target domain data is unavailable and only well-labeled source domain data is available, called robust domain adaptation. To tackle this problem, under the assumption that causal relationships between features and the class variable are robust across domains, we propose a novel Causal AutoEncoder (CAE), which integrates deep autoencoder and causal structure learning into a unified model to learn causal representations only using data from a single source domain. Specifically, a deep autoencoder model is adopted to learn low-dimensional representations, and a causal structure learning model is designed to separate the low-dimensional representations into two groups: causal representations and task-irrelevant representations. Using three real-world datasets the extensive experiments have validated the effectiveness of CAE compared to eleven state-of-the-art methods
    corecore