24,159 research outputs found

    Out-of-sample generalizations for supervised manifold learning for classification

    Get PDF
    Supervised manifold learning methods for data classification map data samples residing in a high-dimensional ambient space to a lower-dimensional domain in a structure-preserving way, while enhancing the separation between different classes in the learned embedding. Most nonlinear supervised manifold learning methods compute the embedding of the manifolds only at the initially available training points, while the generalization of the embedding to novel points, known as the out-of-sample extension problem in manifold learning, becomes especially important in classification applications. In this work, we propose a semi-supervised method for building an interpolation function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function (RBF) interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with a progressive procedure. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets

    Domain Adaptive Neural Networks for Object Recognition

    Full text link
    We propose a simple neural network model to deal with the domain adaptation problem in object recognition. Our model incorporates the Maximum Mean Discrepancy (MMD) measure as a regularization in the supervised learning to reduce the distribution mismatch between the source and target domains in the latent space. From experiments, we demonstrate that the MMD regularization is an effective tool to provide good domain adaptation models on both SURF features and raw image pixels of a particular image data set. We also show that our proposed model, preceded by the denoising auto-encoder pretraining, achieves better performance than recent benchmark models on the same data sets. This work represents the first study of MMD measure in the context of neural networks

    Self-weighted Multiple Kernel Learning for Graph-based Clustering and Semi-supervised Classification

    Full text link
    Multiple kernel learning (MKL) method is generally believed to perform better than single kernel method. However, some empirical studies show that this is not always true: the combination of multiple kernels may even yield an even worse performance than using a single kernel. There are two possible reasons for the failure: (i) most existing MKL methods assume that the optimal kernel is a linear combination of base kernels, which may not hold true; and (ii) some kernel weights are inappropriately assigned due to noises and carelessly designed algorithms. In this paper, we propose a novel MKL framework by following two intuitive assumptions: (i) each kernel is a perturbation of the consensus kernel; and (ii) the kernel that is close to the consensus kernel should be assigned a large weight. Impressively, the proposed method can automatically assign an appropriate weight to each kernel without introducing additional parameters, as existing methods do. The proposed framework is integrated into a unified framework for graph-based clustering and semi-supervised classification. We have conducted experiments on multiple benchmark datasets and our empirical results verify the superiority of the proposed framework.Comment: Accepted by IJCAI 2018, Code is availabl

    Weakly supervised segment annotation via expectation kernel density estimation

    Full text link
    Since the labelling for the positive images/videos is ambiguous in weakly supervised segment annotation, negative mining based methods that only use the intra-class information emerge. In these methods, negative instances are utilized to penalize unknown instances to rank their likelihood of being an object, which can be considered as a voting in terms of similarity. However, these methods 1) ignore the information contained in positive bags, 2) only rank the likelihood but cannot generate an explicit decision function. In this paper, we propose a voting scheme involving not only the definite negative instances but also the ambiguous positive instances to make use of the extra useful information in the weakly labelled positive bags. In the scheme, each instance votes for its label with a magnitude arising from the similarity, and the ambiguous positive instances are assigned soft labels that are iteratively updated during the voting. It overcomes the limitations of voting using only the negative bags. We also propose an expectation kernel density estimation (eKDE) algorithm to gain further insight into the voting mechanism. Experimental results demonstrate the superiority of our scheme beyond the baselines.Comment: 9 pages, 2 figure

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly
    • …
    corecore