3 research outputs found

    Semi-supervised Hashing for Semi-Paired Cross-View Retrieval

    Full text link
    Recently, hashing techniques have gained importance in large-scale retrieval tasks because of their retrieval speed. Most of the existing cross-view frameworks assume that data are well paired. However, the fully-paired multiview situation is not universal in real applications. The aim of the method proposed in this paper is to learn the hashing function for semi-paired cross-view retrieval tasks. To utilize the label information of partial data, we propose a semi-supervised hashing learning framework which jointly performs feature extraction and classifier learning. The experimental results on two datasets show that our method outperforms several state-of-the-art methods in terms of retrieval accuracy.Comment: 6 pages, 5 figures, 2 table

    Cross-modal Subspace Learning via Kernel Correlation Maximization and Discriminative Structure Preserving

    Full text link
    The measure between heterogeneous data is still an open problem. Many research works have been developed to learn a common subspace where the similarity between different modalities can be calculated directly. However, most of existing works focus on learning a latent subspace but the semantically structural information is not well preserved. Thus, these approaches cannot get desired results. In this paper, we propose a novel framework, termed Cross-modal subspace learning via Kernel correlation maximization and Discriminative structure-preserving (CKD), to solve this problem in two aspects. Firstly, we construct a shared semantic graph to make each modality data preserve the neighbor relationship semantically. Secondly, we introduce the Hilbert-Schmidt Independence Criteria (HSIC) to ensure the consistency between feature-similarity and semantic-similarity of samples. Our model not only considers the inter-modality correlation by maximizing the kernel correlation but also preserves the semantically structural information within each modality. The extensive experiments are performed to evaluate the proposed framework on the three public datasets. The experimental results demonstrated that the proposed CKD is competitive compared with the classic subspace learning methods.Comment: The paper is under consideration at Multimedia Tools and Application

    Learning Discriminative Hashing Codes for Cross-Modal Retrieval based on Multi-view Features

    Full text link
    Hashing techniques have been applied broadly in retrieval tasks due to their low storage requirements and high speed of processing. Many hashing methods based on a single view have been extensively studied for information retrieval. However, the representation capacity of a single view is insufficient and some discriminative information is not captured, which results in limited improvement. In this paper, we employ multiple views to represent images and texts for enriching the feature information. Our framework exploits the complementary information among multiple views to better learn the discriminative compact hash codes. A discrete hashing learning framework that jointly performs classifier learning and subspace learning is proposed to complete multiple search tasks simultaneously. Our framework includes two stages, namely a kernelization process and a quantization process. Kernelization aims to find a common subspace where multi-view features can be fused. The quantization stage is designed to learn discriminative unified hashing codes. Extensive experiments are performed on single-label datasets (WiKi and MMED) and multi-label datasets (MIRFlickr and NUS-WIDE) and the experimental results indicate the superiority of our method compared with the state-of-the-art methods.Comment: 28 pages, 10 figures, 13 tables. The paper is under consideration at Pattern Analysis and Application
    corecore