285,711 research outputs found
Semi-Supervised Deep Learning for Fully Convolutional Networks
Deep learning usually requires large amounts of labeled training data, but
annotating data is costly and tedious. The framework of semi-supervised
learning provides the means to use both labeled data and arbitrary amounts of
unlabeled data for training. Recently, semi-supervised deep learning has been
intensively studied for standard CNN architectures. However, Fully
Convolutional Networks (FCNs) set the state-of-the-art for many image
segmentation tasks. To the best of our knowledge, there is no existing
semi-supervised learning method for such FCNs yet. We lift the concept of
auxiliary manifold embedding for semi-supervised learning to FCNs with the help
of Random Feature Embedding. In our experiments on the challenging task of MS
Lesion Segmentation, we leverage the proposed framework for the purpose of
domain adaptation and report substantial improvements over the baseline model.Comment: 9 pages, 6 figure
A semi-supervised spam mail detector
This document describes a novel semi-supervised approach to spam classification, which was successful at the ECML/PKDD 2006 spam classification challenge. A local learning method based on lazy projections was successfully combined with a variant of a standard semi-supervised learning algorithm
- …
