1,195 research outputs found

    Learning Depth from Monocular Videos using Direct Methods

    Full text link
    The ability to predict depth from a single image - using recent advances in CNNs - is of increasing interest to the vision community. Unsupervised strategies to learning are particularly appealing as they can utilize much larger and varied monocular video datasets during learning without the need for ground truth depth or stereo. In previous works, separate pose and depth CNN predictors had to be determined such that their joint outputs minimized the photometric error. Inspired by recent advances in direct visual odometry (DVO), we argue that the depth CNN predictor can be learned without a pose CNN predictor. Further, we demonstrate empirically that incorporation of a differentiable implementation of DVO, along with a novel depth normalization strategy - substantially improves performance over state of the art that use monocular videos for training

    Self-Supervised Monocular Depth Hints

    Get PDF
    Monocular depth estimators can be trained with various forms of self-supervision from binocular-stereo data to circumvent the need for high-quality laser scans or other ground-truth data. The disadvantage, however, is that the photometric reprojection losses used with self-supervised learning typically have multiple local minima. These plausible-looking alternatives to ground truth can restrict what a regression network learns, causing it to predict depth maps of limited quality. As one prominent example, depth discontinuities around thin structures are often incorrectly estimated by current state-of-the-art methods. Here, we study the problem of ambiguous reprojections in depth prediction from stereo-based self-supervision, and introduce Depth Hints to alleviate their effects. Depth Hints are complementary depth suggestions obtained from simple off-the-shelf stereo algorithms. These hints enhance an existing photometric loss function, and are used to guide a network to learn better weights. They require no additional data, and are assumed to be right only sometimes. We show that using our Depth Hints gives a substantial boost when training several leading self-supervised-from-stereo models, not just our own. Further, combined with other good practices, we produce state-of-the-art depth predictions on the KITTI benchmark.Comment: Accepted to ICCV 201

    UAMD-Net: A Unified Adaptive Multimodal Neural Network for Dense Depth Completion

    Full text link
    Depth prediction is a critical problem in robotics applications especially autonomous driving. Generally, depth prediction based on binocular stereo matching and fusion of monocular image and laser point cloud are two mainstream methods. However, the former usually suffers from overfitting while building cost volume, and the latter has a limited generalization due to the lack of geometric constraint. To solve these problems, we propose a novel multimodal neural network, namely UAMD-Net, for dense depth completion based on fusion of binocular stereo matching and the weak constrain from the sparse point clouds. Specifically, the sparse point clouds are converted to sparse depth map and sent to the multimodal feature encoder (MFE) with binocular image, constructing a cross-modal cost volume. Then, it will be further processed by the multimodal feature aggregator (MFA) and the depth regression layer. Furthermore, the existing multimodal methods ignore the problem of modal dependence, that is, the network will not work when a certain modal input has a problem. Therefore, we propose a new training strategy called Modal-dropout which enables the network to be adaptively trained with multiple modal inputs and inference with specific modal inputs. Benefiting from the flexible network structure and adaptive training method, our proposed network can realize unified training under various modal input conditions. Comprehensive experiments conducted on KITTI depth completion benchmark demonstrate that our method produces robust results and outperforms other state-of-the-art methods.Comment: 11 pages, 4 figure
    • …
    corecore