4 research outputs found

    Semi-supervised Skin Detection by Network with Mutual Guidance

    Full text link
    In this paper we present a new data-driven method for robust skin detection from a single human portrait image. Unlike previous methods, we incorporate human body as a weak semantic guidance into this task, considering acquiring large-scale of human labeled skin data is commonly expensive and time-consuming. To be specific, we propose a dual-task neural network for joint detection of skin and body via a semi-supervised learning strategy. The dual-task network contains a shared encoder but two decoders for skin and body separately. For each decoder, its output also serves as a guidance for its counterpart, making both decoders mutually guided. Extensive experiments were conducted to demonstrate the effectiveness of our network with mutual guidance, and experimental results show our network outperforms the state-of-the-art in skin detection.Comment: Accepted by ICCV 201

    A study of the effect of the illumination model on the generation of synthetic training datasets

    Full text link
    The use of computer generated images to train Deep Neural Networks is a viable alternative to real images when the latter are scarce or expensive. In this paper, we study how the illumination model used by the rendering software affects the quality of the generated images. We created eight training sets, each one with a different illumination model, and tested them on three different network architectures, ResNet, U-Net and a combined architecture developed by us. The test set consisted of photos of 3D printed objects produced from the same CAD models used to generate the training set. The effect of the other parameters of the rendering process, such as textures and camera position, was randomized. Our results show that the effect of the illumination model is important, comparable in significance to the network architecture. We also show that both light probes capturing natural environmental light, and modelled lighting environments, can give good results. In the case of light probes, we identified as two significant factors affecting performance the similarity between the light probe and the test environment, as well as the light probe's resolution. Regarding modelled lighting environment, similarity with the test environment was again identified as a significant factor.Comment: 8 page

    Unsupervised Domain Adaptation for Semantic Segmentation of NIR Images through Generative Latent Search

    Full text link
    Segmentation of the pixels corresponding to human skin is an essential first step in multiple applications ranging from surveillance to heart-rate estimation from remote-photoplethysmography. However, the existing literature considers the problem only in the visible-range of the EM-spectrum which limits their utility in low or no light settings where the criticality of the application is higher. To alleviate this problem, we consider the problem of skin segmentation from the Near-infrared images. However, Deep learning based state-of-the-art segmentation techniques demands large amounts of labelled data that is unavailable for the current problem. Therefore we cast the skin segmentation problem as that of target-independent Unsupervised Domain Adaptation (UDA) where we use the data from the Red-channel of the visible-range to develop skin segmentation algorithm on NIR images. We propose a method for target-independent segmentation where the 'nearest-clone' of a target image in the source domain is searched and used as a proxy in the segmentation network trained only on the source domain. We prove the existence of 'nearest-clone' and propose a method to find it through an optimization algorithm over the latent space of a Deep generative model based on variational inference. We demonstrate the efficacy of the proposed method for NIR skin segmentation over the state-of-the-art UDA segmentation methods on the two newly created skin segmentation datasets in NIR domain despite not having access to the target NIR data. Additionally, we report state-of-the-art results for adaption from Synthia to Cityscapes which is a popular setting in Unsupervised Domain Adaptation for semantic segmentation. The code and datasets are available at https://github.com/ambekarsameer96/GLSS.Comment: ECCV 2020 [Spotlight

    Skin disease diagnosis with deep learning: a review

    Full text link
    Skin cancer is one of the most threatening diseases worldwide. However, diagnosing skin cancer correctly is challenging. Recently, deep learning algorithms have emerged to achieve excellent performance on various tasks. Particularly, they have been applied to the skin disease diagnosis tasks. In this paper, we present a review on deep learning methods and their applications in skin disease diagnosis. We first present a brief introduction to skin diseases and image acquisition methods in dermatology, and list several publicly available skin datasets for training and testing algorithms. Then, we introduce the conception of deep learning and review popular deep learning architectures. Thereafter, popular deep learning frameworks facilitating the implementation of deep learning algorithms and performance evaluation metrics are presented. As an important part of this article, we then review the literature involving deep learning methods for skin disease diagnosis from several aspects according to the specific tasks. Additionally, we discuss the challenges faced in the area and suggest possible future research directions. The major purpose of this article is to provide a conceptual and systematically review of the recent works on skin disease diagnosis with deep learning. Given the popularity of deep learning, there remains great challenges in the area, as well as opportunities that we can explore in the future
    corecore