87 research outputs found

    Semi-parametric Topological Memory for Navigation

    Full text link
    We introduce a new memory architecture for navigation in previously unseen environments, inspired by landmark-based navigation in animals. The proposed semi-parametric topological memory (SPTM) consists of a (non-parametric) graph with nodes corresponding to locations in the environment and a (parametric) deep network capable of retrieving nodes from the graph based on observations. The graph stores no metric information, only connectivity of locations corresponding to the nodes. We use SPTM as a planning module in a navigation system. Given only 5 minutes of footage of a previously unseen maze, an SPTM-based navigation agent can build a topological map of the environment and use it to confidently navigate towards goals. The average success rate of the SPTM agent in goal-directed navigation across test environments is higher than the best-performing baseline by a factor of three. A video of the agent is available at https://youtu.be/vRF7f4lhswoComment: Published at International Conference on Learning Representations (ICLR) 2018. Project website at https://sites.google.com/view/SPT

    Learning to Navigate in Indoor Environments: from Memorizing to Reasoning

    Full text link
    Autonomous navigation is an essential capability of smart mobility for mobile robots. Traditional methods must have the environment map to plan a collision-free path in workspace. Deep reinforcement learning (DRL) is a promising technique to realize the autonomous navigation task without a map, with which deep neural network can fit the mapping from observation to reasonable action through explorations. It should not only memorize the trained target, but more importantly, the planner can reason out the unseen goal. We proposed a new motion planner based on deep reinforcement learning that can arrive at new targets that have not been trained before in the indoor environment with RGB image and odometry only. The model has a structure of stacked Long Short-Term memory (LSTM). Finally, experiments were implemented in both simulated and real environments. The source code is available: https://github.com/marooncn/navbot

    Expert-augmented actor-critic for ViZDoom and Montezumas Revenge

    Full text link
    We propose an expert-augmented actor-critic algorithm, which we evaluate on two environments with sparse rewards: Montezumas Revenge and a demanding maze from the ViZDoom suite. In the case of Montezumas Revenge, an agent trained with our method achieves very good results consistently scoring above 27,000 points (in many experiments beating the first world). With an appropriate choice of hyperparameters, our algorithm surpasses the performance of the expert data. In a number of experiments, we have observed an unreported bug in Montezumas Revenge which allowed the agent to score more than 800,000 points

    On Evaluation of Embodied Navigation Agents

    Full text link
    Skillful mobile operation in three-dimensional environments is a primary topic of study in Artificial Intelligence. The past two years have seen a surge of creative work on navigation. This creative output has produced a plethora of sometimes incompatible task definitions and evaluation protocols. To coordinate ongoing and future research in this area, we have convened a working group to study empirical methodology in navigation research. The present document summarizes the consensus recommendations of this working group. We discuss different problem statements and the role of generalization, present evaluation measures, and provide standard scenarios that can be used for benchmarking.Comment: Report of a working group on empirical methodology in navigation research. Authors are listed in alphabetical orde

    Floyd-Warshall Reinforcement Learning: Learning from Past Experiences to Reach New Goals

    Full text link
    Consider mutli-goal tasks that involve static environments and dynamic goals. Examples of such tasks, such as goal-directed navigation and pick-and-place in robotics, abound. Two types of Reinforcement Learning (RL) algorithms are used for such tasks: model-free or model-based. Each of these approaches has limitations. Model-free RL struggles to transfer learned information when the goal location changes, but achieves high asymptotic accuracy in single goal tasks. Model-based RL can transfer learned information to new goal locations by retaining the explicitly learned state-dynamics, but is limited by the fact that small errors in modelling these dynamics accumulate over long-term planning. In this work, we improve upon the limitations of model-free RL in multi-goal domains. We do this by adapting the Floyd-Warshall algorithm for RL and call the adaptation Floyd-Warshall RL (FWRL). The proposed algorithm learns a goal-conditioned action-value function by constraining the value of the optimal path between any two states to be greater than or equal to the value of paths via intermediary states. Experimentally, we show that FWRL is more sample-efficient and learns higher reward strategies in multi-goal tasks as compared to Q-learning, model-based RL and other relevant baselines in a tabular domain

    Playing hard exploration games by watching YouTube

    Full text link
    Deep reinforcement learning methods traditionally struggle with tasks where environment rewards are particularly sparse. One successful method of guiding exploration in these domains is to imitate trajectories provided by a human demonstrator. However, these demonstrations are typically collected under artificial conditions, i.e. with access to the agent's exact environment setup and the demonstrator's action and reward trajectories. Here we propose a two-stage method that overcomes these limitations by relying on noisy, unaligned footage without access to such data. First, we learn to map unaligned videos from multiple sources to a common representation using self-supervised objectives constructed over both time and modality (i.e. vision and sound). Second, we embed a single YouTube video in this representation to construct a reward function that encourages an agent to imitate human gameplay. This method of one-shot imitation allows our agent to convincingly exceed human-level performance on the infamously hard exploration games Montezuma's Revenge, Pitfall! and Private Eye for the first time, even if the agent is not presented with any environment rewards

    Learning to Learn How to Learn: Self-Adaptive Visual Navigation Using Meta-Learning

    Full text link
    Learning is an inherently continuous phenomenon. When humans learn a new task there is no explicit distinction between training and inference. As we learn a task, we keep learning about it while performing the task. What we learn and how we learn it varies during different stages of learning. Learning how to learn and adapt is a key property that enables us to generalize effortlessly to new settings. This is in contrast with conventional settings in machine learning where a trained model is frozen during inference. In this paper we study the problem of learning to learn at both training and test time in the context of visual navigation. A fundamental challenge in navigation is generalization to unseen scenes. In this paper we propose a self-adaptive visual navigation method (SAVN) which learns to adapt to new environments without any explicit supervision. Our solution is a meta-reinforcement learning approach where an agent learns a self-supervised interaction loss that encourages effective navigation. Our experiments, performed in the AI2-THOR framework, show major improvements in both success rate and SPL for visual navigation in novel scenes. Our code and data are available at: https://github.com/allenai/savn

    Visual Semantic Navigation using Scene Priors

    Full text link
    How do humans navigate to target objects in novel scenes? Do we use the semantic/functional priors we have built over years to efficiently search and navigate? For example, to search for mugs, we search cabinets near the coffee machine and for fruits we try the fridge. In this work, we focus on incorporating semantic priors in the task of semantic navigation. We propose to use Graph Convolutional Networks for incorporating the prior knowledge into a deep reinforcement learning framework. The agent uses the features from the knowledge graph to predict the actions. For evaluation, we use the AI2-THOR framework. Our experiments show how semantic knowledge improves performance significantly. More importantly, we show improvement in generalization to unseen scenes and/or objects. The supplementary video can be accessed at the following link: https://youtu.be/otKjuO805dE

    SafeRoute: Learning to Navigate Streets Safely in an Urban Environment

    Full text link
    Recent studies show that 85% of women have changed their traveled route to avoid harassment and assault. Despite this, current mapping tools do not empower users with information to take charge of their personal safety. We propose SafeRoute, a novel solution to the problem of navigating cities and avoiding street harassment and crime. Unlike other street navigation applications, SafeRoute introduces a new type of path generation via deep reinforcement learning. This enables us to successfully optimize for multi-criteria path-finding and incorporate representation learning within our framework. Our agent learns to pick favorable streets to create a safe and short path with a reward function that incorporates safety and efficiency. Given access to recent crime reports in many urban cities, we train our model for experiments in Boston, New York, and San Francisco. We test our model on areas of these cities, specifically the populated downtown regions where tourists and those unfamiliar with the streets walk. We evaluate SafeRoute and successfully improve over state-of-the-art methods by up to 17% in local average distance from crimes while decreasing path length by up to 7%.Comment: 8 page

    Plan2Vec: Unsupervised Representation Learning by Latent Plans

    Full text link
    In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space.Comment: code available at https://geyang.github.io/plan2ve
    • …
    corecore