147 research outputs found

    Semi-implicit Krylov deferred correction algorithms, applications, and parallelization

    Get PDF
    In this dissertation, we introduce several strategies to improve the efficiency of the Krylov deferred correction (KDC) methods for special structured ordinary and partial differential equations with algebraic constraints. We first study the semi-implicit KDC (SI-KDC) technique which splits stiff differential equation systems into different components and applies different low-order time marching schemes to these components. Compared with the fully implicit KDC (FI-KDC) method, our analysis and preliminary numerical results for differential algebraic equations show that the SI-KDC schemes are more efficient due to the reduced number of operations in each spectral deferred correction (SDC) iteration. Next, we apply the SI-KDC scheme to simulate a two-scale model describing the mass transfer processes in drinking water treatment applications, in which some set of chemical species move from one distinct phase to a second distinct phase. We also present an improved effective model to further advance the efficiency of the multiscale modeling. Finally, we investigate the parareal method to parallelize the KDC techniques, and present some preliminary numerical results to show its potential in large scale simulations

    An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    Get PDF
    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications

    On the convergence of spectral deferred correction methods

    Get PDF
    In this work we analyze the convergence properties of the Spectral Deferred Correction (SDC) method originally proposed by Dutt et al. [BIT, 40 (2000), pp. 241--266]. The framework for this high-order ordinary differential equation (ODE) solver is typically described wherein a low-order approximation (such as forward or backward Euler) is lifted to higher order accuracy by applying the same low-order method to an error equation and then adding in the resulting defect to correct the solution. Our focus is not on solving the error equation to increase the order of accuracy, but on rewriting the solver as an iterative Picard integral equation solver. In doing so, our chief finding is that it is not the low-order solver that picks up the order of accuracy with each correction, but it is the underlying quadrature rule of the right hand side function that is solely responsible for picking up additional orders of accuracy. Our proofs point to a total of three sources of errors that SDC methods carry: the error at the current time point, the error from the previous iterate, and the numerical integration error that comes from the total number of quadrature nodes used for integration. The second of these two sources of errors is what separates SDC methods from Picard integral equation methods; our findings indicate that as long as difference between the current and previous iterate always gets multiplied by at least a constant multiple of the time step size, then high-order accuracy can be found even if the underlying "solver" is inconsistent the underlying ODE. From this vantage, we solidify the prospects of extending spectral deferred correction methods to a larger class of solvers to which we present some examples.Comment: 29 page

    Krylov implicit integration factor discontinuous Galerkin methods on sparse grids for high dimensional reaction-diffusion equations

    Full text link
    Computational costs of numerically solving multidimensional partial differential equations (PDEs) increase significantly when the spatial dimensions of the PDEs are high, due to large number of spatial grid points. For multidimensional reaction-diffusion equations, stiffness of the system provides additional challenges for achieving efficient numerical simulations. In this paper, we propose a class of Krylov implicit integration factor (IIF) discontinuous Galerkin (DG) methods on sparse grids to solve reaction-diffusion equations on high spatial dimensions. The key ingredient of spatial DG discretization is the multiwavelet bases on nested sparse grids, which can significantly reduce the numbers of degrees of freedom. To deal with the stiffness of the DG spatial operator in discretizing reaction-diffusion equations, we apply the efficient IIF time discretization methods, which are a class of exponential integrators. Krylov subspace approximations are used to evaluate the large size matrix exponentials resulting from IIF schemes for solving PDEs on high spatial dimensions. Stability and error analysis for the semi-discrete scheme are performed. Numerical examples of both scalar equations and systems in two and three spatial dimensions are provided to demonstrate the accuracy and efficiency of the methods. The stiffness of the reaction-diffusion equations is resolved well and large time step size computations are obtained

    High order operator splitting methods based on an integral deferred correction framework

    Full text link
    Integral deferred correction (IDC) methods have been shown to be an efficient way to achieve arbitrary high order accuracy and possess good stability properties. In this paper, we construct high order operator splitting schemes using the IDC procedure to solve initial value problems (IVPs). We present analysis to show that the IDC methods can correct for both the splitting and numerical errors, lifting the order of accuracy by rr with each correction, where rr is the order of accuracy of the method used to solve the correction equation. We further apply this framework to solve partial differential equations (PDEs). Numerical examples in two dimensions of linear and nonlinear initial-boundary value problems are presented to demonstrate the performance of the proposed IDC approach.Comment: 33 pages, 22 figure

    Krylov deferred correction methods for differential equations with algebraic constraints

    Get PDF
    In this dissertation, we introduce a new class of spectral time stepping methods for efficient and accurate solutions of ordinary differential equations (ODEs), differential algebraic equations (DAEs), and partial differential equations (PDEs). The methods are based on applying spectral deferred correction techniques as preconditioners to Picard integral collocation formulations, least squares based orthogonal polynomial approximations are computed using Gaussian type quadratures, and spectral integration is used instead of numerically unstable differentiation. For ODE problems, the resulting Krylov deferred correction (KDC) methods solve the preconditioned nonlinear system using Newton-Krylov schemes such as Newton-GMRES method. For PDE systems, method of lines transpose (MoLT ) couples the KDC techniques with fast elliptic equation solvers based on integral equation formulations and fast algorithms. Preliminary numerical results show that the new methods are of arbitrary order of accuracy, extremely stable, and very competitive with existing techniques, particularly when high precision is desired

    A Hybrid Algorithm Based on Optimal Quadratic Spline Collocation and Parareal Deferred Correction for Parabolic PDEs

    Get PDF
    Parareal is a kind of time parallel numerical methods for time-dependent systems. In this paper, we consider a general linear parabolic PDE, use optimal quadratic spline collocation (QSC) method for the space discretization, and proceed with the parareal technique on the time domain. Meanwhile, deferred correction technique is also used to improve the accuracy during the iterations. In fact, the optimal QSC method is a correction of general QSC method. Along the temporal direction we embed the iterations of deferred correction into parareal to construct a hybrid method, parareal deferred correction (PDC) method. The error estimation is presented and the stability is analyzed. To save computational cost, we find out a simple way to balance the two kinds of iterations as much as possible. We also argue that the hybrid algorithm has better system efficiency and costs less running time. Numerical experiments by multicore computers are attached to exhibit the effectiveness of the hybrid algorithm
    • …
    corecore