51 research outputs found

    A walk in the noncommutative garden

    Get PDF
    This text is written for the volume of the school/conference "Noncommutative Geometry 2005" held at IPM Tehran. It gives a survey of methods and results in noncommutative geometry, based on a discussion of significant examples of noncommutative spaces in geometry, number theory, and physics. The paper also contains an outline (the ``Tehran program'') of ongoing joint work with Consani on the noncommutative geometry of the adeles class space and its relation to number theoretic questions.Comment: 106 pages, LaTeX, 23 figure

    Connecting Mathematics and Mathematics Education

    Get PDF
    This open access book features a selection of articles written by Erich Ch. Wittmann between 1984 to 2019, which shows how the “design science conception” has been continuously developed over a number of decades. The articles not only describe this conception in general terms, but also demonstrate various substantial learning environments that serve as typical examples. In terms of teacher education, the book provides clear information on how to combine (well-understood) mathematics and methods courses to benefit of teachers. The role of mathematics in mathematics education is often explicitly and implicitly reduced to the delivery of subject matter that then has to be selected and made palpable for students using methods imported from psychology, sociology, educational research and related disciplines. While these fields have made significant contributions to mathematics education in recent decades, it cannot be ignored that mathematics itself, if well understood, provides essential knowledge for teaching mathematics beyond the pure delivery of subject matter. For this purpose, mathematics has to be conceived of as an organism that is deeply rooted in elementary operations of the human mind, which can be seamlessly developed to higher and higher levels so that the full richness of problems of various degrees of difficulty, and different means of representation, problem-solving strategies, and forms of proof can be used in ways that are appropriate for the respective level. This view of mathematics is essential for designing learning environments and curricula, for conducting empirical studies on truly mathematical processes and also for implementing the findings of mathematics education in teacher education, where it is crucial to take systemic constraints into account

    Connecting Mathematics and Mathematics Education

    Get PDF
    This open access book features a selection of articles written by Erich Ch. Wittmann between 1984 to 2019, which shows how the “design science conception” has been continuously developed over a number of decades. The articles not only describe this conception in general terms, but also demonstrate various substantial learning environments that serve as typical examples. In terms of teacher education, the book provides clear information on how to combine (well-understood) mathematics and methods courses to benefit of teachers. The role of mathematics in mathematics education is often explicitly and implicitly reduced to the delivery of subject matter that then has to be selected and made palpable for students using methods imported from psychology, sociology, educational research and related disciplines. While these fields have made significant contributions to mathematics education in recent decades, it cannot be ignored that mathematics itself, if well understood, provides essential knowledge for teaching mathematics beyond the pure delivery of subject matter. For this purpose, mathematics has to be conceived of as an organism that is deeply rooted in elementary operations of the human mind, which can be seamlessly developed to higher and higher levels so that the full richness of problems of various degrees of difficulty, and different means of representation, problem-solving strategies, and forms of proof can be used in ways that are appropriate for the respective level. This view of mathematics is essential for designing learning environments and curricula, for conducting empirical studies on truly mathematical processes and also for implementing the findings of mathematics education in teacher education, where it is crucial to take systemic constraints into account

    Quadratic Residues and Non-Residues: Selected Topics

    Full text link
    Number theory as a coherent mathematical subject started with the work of Fermat in the decade from 1630 to 1640, but modern number theory, that is, the systematic and mathematically rigorous development of the subject from fundamental properties of the integers, began in 1801 with the appearance of the landmark text of Gauss, Disquisitiones Arithmeticae. A major part of the Disquisitiones deals with quadratic residues and nonresidues. Beginning with these fundamental contributions of Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the key ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study as a window through which to view the development of some of those ideas and techniques. In pursuit of that goal, we will employ methods from elementary, analytic, and combinatorial number theory, as well as methods from the theory of algebraic numbers.Comment: xi+265 pp., 4 tables, 20 figures in Lecture Notes in Mathematics no. 2171, Springer, New York, 201
    • …
    corecore