7,703 research outputs found

    Few-Cost Salient Object Detection with Adversarial-Paced Learning

    Get PDF
    Detecting and segmenting salient objects from given image scenes has received great attention in recent years. A fundamental challenge in training the existing deep saliency detection models is the requirement of large amounts of annotated data. While gathering large quantities of training data becomes cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. To address this problem, this paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only, thus dramatically alleviating human labor in training models. To this end, we name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario. Essentially, APL is derived from the self-paced learning (SPL) regime but it infers the robust learning pace through the data-driven adversarial learning mechanism rather than the heuristic design of the learning regularizer. Comprehensive experiments on four widely-used benchmark datasets demonstrate that the proposed method can effectively approach to the existing supervised deep salient object detection models with only 1k human-annotated training images. The project page is available at https://github.com/hb-stone/FC-SOD

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Human Supervised Semi-Autonomous Approach for the DARPA Robotics Challenge Door Task

    Get PDF
    As the field of autonomous robots continue to advance, there is still a tremendous benefit to research human-supervised robot systems for fielding them in practical applications. The DRC inspired by the Fukushima nuclear power plant disaster has been a major research and development program for the past three years, to advance the field of human supervised control of robots for responding to natural and man-made disasters. The overall goal of the research presented in this thesis is to realise a new approach for semi-autonomous control of the Atlas humanoid robot under discrete commands from the human operator. A combination of autonomous and semi-autonomous perception and manipulation techniques to accomplish the task of detecting, opening and walking through a door are presented. The methods are validated in various different scenarios relevant to DRC door task
    • …
    corecore