15,726 research outputs found

    Virtual Adversarial Ladder Networks For Semi-supervised Learning

    Get PDF
    Semi-supervised learning (SSL) partially circumvents the high cost of labeling data by augmenting a small labeled dataset with a large and relatively cheap unlabeled dataset drawn from the same distribution. This paper offers a novel interpretation of two deep learning-based SSL approaches, ladder networks and virtual adversarial training (VAT), as applying distributional smoothing to their respective latent spaces. We propose a class of models that fuse these approaches. We achieve near-supervised accuracy with high consistency on the MNIST dataset using just 5 labels per class: our best model, ladder with layer-wise virtual adversarial noise (LVAN-LW), achieves 1.42%±0.12 average error rate on the MNIST test set, in comparison with 1.62%±0.65 reported for the ladder network. On adversarial examples generated with L2-normalized fast gradient method, LVAN-LW trained with 5 examples per class achieves average error rate 2.4%±0.3 compared to 68.6%±6.5 for the ladder network and 9.9%±7.5 for VAT

    Semi-Supervised Speech Emotion Recognition with Ladder Networks

    Full text link
    Speech emotion recognition (SER) systems find applications in various fields such as healthcare, education, and security and defense. A major drawback of these systems is their lack of generalization across different conditions. This problem can be solved by training models on large amounts of labeled data from the target domain, which is expensive and time-consuming. Another approach is to increase the generalization of the models. An effective way to achieve this goal is by regularizing the models through multitask learning (MTL), where auxiliary tasks are learned along with the primary task. These methods often require the use of labeled data which is computationally expensive to collect for emotion recognition (gender, speaker identity, age or other emotional descriptors). This study proposes the use of ladder networks for emotion recognition, which utilizes an unsupervised auxiliary task. The primary task is a regression problem to predict emotional attributes. The auxiliary task is the reconstruction of intermediate feature representations using a denoising autoencoder. This auxiliary task does not require labels so it is possible to train the framework in a semi-supervised fashion with abundant unlabeled data from the target domain. This study shows that the proposed approach creates a powerful framework for SER, achieving superior performance than fully supervised single-task learning (STL) and MTL baselines. The approach is implemented with several acoustic features, showing that ladder networks generalize significantly better in cross-corpus settings. Compared to the STL baselines, the proposed approach achieves relative gains in concordance correlation coefficient (CCC) between 3.0% and 3.5% for within corpus evaluations, and between 16.1% and 74.1% for cross corpus evaluations, highlighting the power of the architecture

    Detecting and Classifying Nuclei on a Budget

    Get PDF
    The benefits of deep neural networks can be hard to realise in medical imaging tasks because training sample sizes are often modest. Pre-training on large data sets and subsequent transfer learning to specific tasks with limited labelled training data has proved a successful strategy in other domains. Here, we implement and test this idea for detecting and classifying nuclei in histology, important tasks that enable quantifiable characterisation of prostate cancer. We pre-train a convolutional neural network for nucleus detection on a large colon histology dataset, and examine the effects of fine-tuning this network with different amounts of prostate histology data. Results show promise for clinical translation. However, we find that transfer learning is not always a viable option when training deep neural networks for nucleus classification. As such, we also demonstrate that semi-supervised ladder networks are a suitable alternative for learning a nucleus classifier with limited data
    • …
    corecore