3 research outputs found

    Semi-Supervised Learning via New Deep Network Inversion

    Full text link
    We exploit a recently derived inversion scheme for arbitrary deep neural networks to develop a new semi-supervised learning framework that applies to a wide range of systems and problems. The approach outperforms current state-of-the-art methods on MNIST reaching 99.14%99.14\% of test set accuracy while using 55 labeled examples per class. Experiments with one-dimensional signals highlight the generality of the method. Importantly, our approach is simple, efficient, and requires no change in the deep network architecture.Comment: arXiv admin note: substantial text overlap with arXiv:1710.0930

    Workshop Report: Detection and Classification in Marine Bioacoustics with Deep Learning

    Full text link
    On 21-22 November 2019, about 30 researchers gathered in Victoria, BC, Canada, for the workshop "Detection and Classification in Marine Bioacoustics with Deep Learning" organized by MERIDIAN and hosted by Ocean Networks Canada. The workshop was attended by marine biologists, data scientists, and computer scientists coming from both Canadian coasts and the US and representing a wide spectrum of research organizations including universities, government (Fisheries and Oceans Canada, National Oceanic and Atmospheric Administration), industry (JASCO Applied Sciences, Google, Axiom Data Science), and non-for-profits (Orcasound, OrcaLab). Consisting of a mix of oral presentations, open discussion sessions, and hands-on tutorials, the workshop program offered a rare opportunity for specialists from distinctly different domains to engage in conversation about deep learning and its promising potential for the development of detection and classification algorithms in underwater acoustics. In this workshop report, we summarize key points from the presentations and discussion sessions.Comment: 13 pages, 1 figure, 1 tabl

    Adversarial Code Learning for Image Generation

    Full text link
    We introduce the "adversarial code learning" (ACL) module that improves overall image generation performance to several types of deep models. Instead of performing a posterior distribution modeling in the pixel spaces of generators, ACLs aim to jointly learn a latent code with another image encoder/inference net, with a prior noise as its input. We conduct the learning in an adversarial learning process, which bears a close resemblance to the original GAN but again shifts the learning from image spaces to prior and latent code spaces. ACL is a portable module that brings up much more flexibility and possibilities in generative model designs. First, it allows flexibility to convert non-generative models like Autoencoders and standard classification models to decent generative models. Second, it enhances existing GANs' performance by generating meaningful codes and images from any part of the prior. We have incorporated our ACL module with the aforementioned frameworks and have performed experiments on synthetic, MNIST, CIFAR-10, and CelebA datasets. Our models have achieved significant improvements which demonstrated the generality for image generation tasks
    corecore