3,043 research outputs found

    Low-shot learning with large-scale diffusion

    Full text link
    This paper considers the problem of inferring image labels from images when only a few annotated examples are available at training time. This setup is often referred to as low-shot learning, where a standard approach is to re-train the last few layers of a convolutional neural network learned on separate classes for which training examples are abundant. We consider a semi-supervised setting based on a large collection of images to support label propagation. This is possible by leveraging the recent advances on large-scale similarity graph construction. We show that despite its conceptual simplicity, scaling label propagation up to hundred millions of images leads to state of the art accuracy in the low-shot learning regime

    Hierarchical Subquery Evaluation for Active Learning on a Graph

    Get PDF
    To train good supervised and semi-supervised object classifiers, it is critical that we not waste the time of the human experts who are providing the training labels. Existing active learning strategies can have uneven performance, being efficient on some datasets but wasteful on others, or inconsistent just between runs on the same dataset. We propose perplexity based graph construction and a new hierarchical subquery evaluation algorithm to combat this variability, and to release the potential of Expected Error Reduction. Under some specific circumstances, Expected Error Reduction has been one of the strongest-performing informativeness criteria for active learning. Until now, it has also been prohibitively costly to compute for sizeable datasets. We demonstrate our highly practical algorithm, comparing it to other active learning measures on classification datasets that vary in sparsity, dimensionality, and size. Our algorithm is consistent over multiple runs and achieves high accuracy, while querying the human expert for labels at a frequency that matches their desired time budget.Comment: CVPR 201

    Semi-Supervised Learning with Scarce Annotations

    Full text link
    While semi-supervised learning (SSL) algorithms provide an efficient way to make use of both labelled and unlabelled data, they generally struggle when the number of annotated samples is very small. In this work, we consider the problem of SSL multi-class classification with very few labelled instances. We introduce two key ideas. The first is a simple but effective one: we leverage the power of transfer learning among different tasks and self-supervision to initialize a good representation of the data without making use of any label. The second idea is a new algorithm for SSL that can exploit well such a pre-trained representation. The algorithm works by alternating two phases, one fitting the labelled points and one fitting the unlabelled ones, with carefully-controlled information flow between them. The benefits are greatly reducing overfitting of the labelled data and avoiding issue with balancing labelled and unlabelled losses during training. We show empirically that this method can successfully train competitive models with as few as 10 labelled data points per class. More in general, we show that the idea of bootstrapping features using self-supervised learning always improves SSL on standard benchmarks. We show that our algorithm works increasingly well compared to other methods when refining from other tasks or datasets.Comment: Workshop on Deep Vision, CVPR 202

    A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels

    Full text link
    The recent success of deep neural networks is powered in part by large-scale well-labeled training data. However, it is a daunting task to laboriously annotate an ImageNet-like dateset. On the contrary, it is fairly convenient, fast, and cheap to collect training images from the Web along with their noisy labels. This signifies the need of alternative approaches to training deep neural networks using such noisy labels. Existing methods tackling this problem either try to identify and correct the wrong labels or reweigh the data terms in the loss function according to the inferred noisy rates. Both strategies inevitably incur errors for some of the data points. In this paper, we contend that it is actually better to ignore the labels of some of the data points than to keep them if the labels are incorrect, especially when the noisy rate is high. After all, the wrong labels could mislead a neural network to a bad local optimum. We suggest a two-stage framework for the learning from noisy labels. In the first stage, we identify a small portion of images from the noisy training set of which the labels are correct with a high probability. The noisy labels of the other images are ignored. In the second stage, we train a deep neural network in a semi-supervised manner. This framework effectively takes advantage of the whole training set and yet only a portion of its labels that are most likely correct. Experiments on three datasets verify the effectiveness of our approach especially when the noisy rate is high

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    A Simple Algorithm for Semi-supervised Learning with Improved Generalization Error Bound

    Full text link
    In this work, we develop a simple algorithm for semi-supervised regression. The key idea is to use the top eigenfunctions of integral operator derived from both labeled and unlabeled examples as the basis functions and learn the prediction function by a simple linear regression. We show that under appropriate assumptions about the integral operator, this approach is able to achieve an improved regression error bound better than existing bounds of supervised learning. We also verify the effectiveness of the proposed algorithm by an empirical study.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012
    • …
    corecore