559 research outputs found

    It is all about where you start: Text-to-image generation with seed selection

    Full text link
    Text-to-image diffusion models can synthesize a large variety of concepts in new compositions and scenarios. However, they still struggle with generating uncommon concepts, rare unusual combinations, or structured concepts like hand palms. Their limitation is partly due to the long-tail nature of their training data: web-crawled data sets are strongly unbalanced, causing models to under-represent concepts from the tail of the distribution. Here we characterize the effect of unbalanced training data on text-to-image models and offer a remedy. We show that rare concepts can be correctly generated by carefully selecting suitable generation seeds in the noise space, a technique that we call SeedSelect. SeedSelect is efficient and does not require retraining the diffusion model. We evaluate the benefit of SeedSelect on a series of problems. First, in few-shot semantic data augmentation, where we generate semantically correct images for few-shot and long-tail benchmarks. We show classification improvement on all classes, both from the head and tail of the training data of diffusion models. We further evaluate SeedSelect on correcting images of hands, a well-known pitfall of current diffusion models, and show that it improves hand generation substantially

    Clue: Cross-modal Coherence Modeling for Caption Generation

    Full text link
    We use coherence relations inspired by computational models of discourse to study the information needs and goals of image captioning. Using an annotation protocol specifically devised for capturing image--caption coherence relations, we annotate 10,000 instances from publicly-available image--caption pairs. We introduce a new task for learning inferences in imagery and text, coherence relation prediction, and show that these coherence annotations can be exploited to learn relation classifiers as an intermediary step, and also train coherence-aware, controllable image captioning models. The results show a dramatic improvement in the consistency and quality of the generated captions with respect to information needs specified via coherence relations.Comment: Accepted as a long paper to ACL 202

    LUNA: A Model-Based Universal Analysis Framework for Large Language Models

    Full text link
    Over the past decade, Artificial Intelligence (AI) has had great success recently and is being used in a wide range of academic and industrial fields. More recently, LLMs have made rapid advancements that have propelled AI to a new level, enabling even more diverse applications and industrial domains with intelligence, particularly in areas like software engineering and natural language processing. Nevertheless, a number of emerging trustworthiness concerns and issues exhibited in LLMs have already recently received much attention, without properly solving which the widespread adoption of LLMs could be greatly hindered in practice. The distinctive characteristics of LLMs, such as the self-attention mechanism, extremely large model scale, and autoregressive generation schema, differ from classic AI software based on CNNs and RNNs and present new challenges for quality analysis. Up to the present, it still lacks universal and systematic analysis techniques for LLMs despite the urgent industrial demand. Towards bridging this gap, we initiate an early exploratory study and propose a universal analysis framework for LLMs, LUNA, designed to be general and extensible, to enable versatile analysis of LLMs from multiple quality perspectives in a human-interpretable manner. In particular, we first leverage the data from desired trustworthiness perspectives to construct an abstract model as an auxiliary analysis asset, which is empowered by various abstract model construction methods. To assess the quality of the abstract model, we collect and define a number of evaluation metrics, aiming at both abstract model level and the semantics level. Then, the semantics, which is the degree of satisfaction of the LLM w.r.t. the trustworthiness perspective, is bound to and enriches the abstract model with semantics, which enables more detailed analysis applications for diverse purposes.Comment: 44 pages, 9 figure

    DiffAlign : Few-shot learning using diffusion based synthesis and alignment

    Full text link
    We address the problem of few-shot classification where the goal is to learn a classifier from a limited set of samples. While data-driven learning is shown to be effective in various applications, learning from less data still remains challenging. To address this challenge, existing approaches consider various data augmentation techniques for increasing the number of training samples. Pseudo-labeling is commonly used in a few-shot setup, where approximate labels are estimated for a large set of unlabeled images. We propose DiffAlign which focuses on generating images from class labels. Specifically, we leverage the recent success of the generative models (e.g., DALL-E and diffusion models) that can generate realistic images from texts. However, naive learning on synthetic images is not adequate due to the domain gap between real and synthetic images. Thus, we employ a maximum mean discrepancy (MMD) loss to align the synthetic images to the real images minimizing the domain gap. We evaluate our method on the standard few-shot classification benchmarks: CIFAR-FS, FC100, miniImageNet, tieredImageNet and a cross-domain few-shot classification benchmark: miniImageNet to CUB. The proposed approach significantly outperforms the stateof-the-art in both 5-shot and 1-shot setups on these benchmarks. Our approach is also shown to be effective in the zero-shot classification setu

    A Survey of Language Model Confidence Estimation and Calibration

    Full text link
    Language models (LMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, the reliability of their output is concerning and questionable regarding the demand for AI safety. Assessing the confidence of LM predictions and calibrating them across different tasks with the aim to align LM confidence with accuracy can help mitigate risks and enable LMs to make better decisions. There have been various works in this respect, but there has been no comprehensive overview of this important research area. The present survey aims to bridge this gap. In particular, we discuss methods and techniques for LM confidence estimation and calibration, encompassing different LMs and various tasks. We further outline the challenges of estimating the confidence for large language models and we suggest some promising directions for future work.Comment: 16 pages, 1 page, 1 tabl
    corecore