271 research outputs found

    Consistent Query Answering for Primary Keys on Rooted Tree Queries

    Full text link
    We study the data complexity of consistent query answering (CQA) on databases that may violate the primary key constraints. A repair is a maximal subset of the database satisfying the primary key constraints. For a Boolean query q, the problem CERTAINTY(q) takes a database as input, and asks whether or not each repair satisfies q. The computational complexity of CERTAINTY(q) has been established whenever q is a self-join-free Boolean conjunctive query, or a (not necessarily self-join-free) Boolean path query. In this paper, we take one more step towards a general classification for all Boolean conjunctive queries by considering the class of rooted tree queries. In particular, we show that for every rooted tree query q, CERTAINTY(q) is in FO, NL-hard \cap LFP, or coNP-complete, and it is decidable (in polynomial time), given q, which of the three cases applies. We also extend our classification to larger classes of queries with simple primary keys. Our classification criteria rely on query homomorphisms and our polynomial-time fixpoint algorithm is based on a novel use of context-free grammar (CFG).Comment: To appear in PODS'2

    Formal Analysis and Verification of OAuth 2.0 in SSO

    Get PDF
    This thesis examines the OAuth 2.0 protocol within Single Sign-On (SSO) systems through modelling and formal analysis. The versatile Performing Security Proofs of Stateful Protocols (PSPSP), a theory for the Isabelle/HOL proof assistant was used to carry out the verification. Additionally the Open-Source Fixedpoint Model-Checker (OFMC), was used in this verification for its accessibility. PSPSP notably supports the modelling of mutable long-term state, a feature not common in many similar tools. The challenge lies in crafting a model that accurately mirrors real-world scenarios while integrating the OAuth 2.0 protocol on top of the TLS 1.2 protocol. The goal is to produce a model that is both realistic and doesn't induce false attack vectors in its abstraction. The complexity of combining SSO, OAuth, and TLS often necessitates simplifications for effective verification. This study explores the modelling of OAuth components without drastic over-simplifications, verifying each in isolation, and then applying compositional reasoning available in PSPSP/Isabelle to introduce the TLS protocol as well. This process necessitates a well-defined interface between components and verification of all components individually and in the composition. Both tools confirm the lack of detectable vulnerabilities in the OAuth 2.0 protocol, reinforcing its security and prominence in SSO systems. The research explores the process of modelling and formally verifying security protocols, and deepens the understanding of OAuth 2.0's role in SSO systems

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Synthesizing FDIR Recovery Strategies for Space Systems

    Get PDF
    Dynamic Fault Trees (DFTs) are powerful tools to drive the design of fault tolerant systems. However, semantic pitfalls limit their practical utility for interconnected systems that require complex recovery strategies to maximize their reliability. This thesis discusses the shortcomings of DFTs in the context of analyzing Fault Detection, Isolation and Recovery (FDIR) concepts with a particular focus on the needs of space systems. To tackle these shortcomings, we introduce an inherently non-deterministic model for DFTs. Deterministic recovery strategies are synthesized by transforming these non-deterministic DFTs into Markov automata that represent all possible choices between recovery actions. From the corresponding scheduler, optimized to maximize a given RAMS (Reliability, Availability, Maintainability and Safety) metric, an optimal recovery strategy can then be derived and represented by a model we call recovery automaton. We discuss dedicated techniques for reducing the state space of this recovery automaton and analyze their soundness and completeness. Moreover, modularized approaches to handle the complexity added by the state-based transformation approach are discussed. Furthermore, we consider the non-deterministic approach in a partially observable setting and propose an approach to lift the model for the fully observable case. We give an implementation of our approach within the Model-Based Systems Engineering (MBSE) framework Virtual Satellite. Finally, the implementation is evaluated based on the FFORT benchmark. The results show that basic non-deterministic DFTs generally scale well. However, we also found that semantically enriched non-deterministic DFTs employing repair or delayed observability mechanisms pose a challenge

    Lessons from Formally Verified Deployed Software Systems (Extended version)

    Full text link
    The technology of formal software verification has made spectacular advances, but how much does it actually benefit the development of practical software? Considerable disagreement remains about the practicality of building systems with mechanically-checked proofs of correctness. Is this prospect confined to a few expensive, life-critical projects, or can the idea be applied to a wide segment of the software industry? To help answer this question, the present survey examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use. It considers the technologies used, the form of verification applied, the results obtained, and the lessons that can be drawn for the software industry at large and its ability to benefit from formal verification techniques and tools. Note: a short version of this paper is also available, covering in detail only a subset of the considered systems. The present version is intended for full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author

    Blockchain Software Verification and Optimization

    Get PDF
    In the last decade, blockchain technology has undergone a strong evolution. The maturity reached and the consolidation obtained have aroused the interest of companies and businesses, transforming it into a possible response to various industrial needs. However, the lack of standards and tools for the development and maintenance of blockchain software leaves open challenges and various possibilities for improvements. The goal of this thesis is to tackle some of the challenges proposed by blockchain technology, to design and implement analysis, processes, and architectures that may be applied in the real world. In particular, two topics are addressed: the verification of the blockchain software and the code optimization of smart contracts. As regards the verification, the thesis focuses on the original developments of tools and analyses able to detect statically, i.e. without code execution, issues related to non-determinism, untrusted cross-contracts invocation, and numerical overflow/underflow. Moreover, an approach based on on-chain verification is investigated, to proactively involve the blockchain in verifying the code before and after its deployment. For the optimization side, the thesis describes an optimization process for the code translation from Solidity language to Takamaka, also proposing an efficient algorithm to compute snapshots for fungible and non-fungible tokens. The results of this thesis are an important first step towards improving blockchain software development, empirically demonstrating the applicability of the proposed approaches and their involvement also in the industrial field

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    An Extensible Theorem Proving Frontend

    Get PDF
    Interaktive Theorembeweiser sind Softwarewerkzeuge zum computergestützten Beweisen, d.h. sie können entsprechend kodierte Beweise von logischen Aussagen sowohl verifizieren als auch beim Erstellen dieser unterstützen. In den letzten Jahren wurden weitreichende Formalisierungsprojekte über Mathematik sowie Programmverifikation mit solchen Theorembeweisern bewältigt. Der Theorembeweiser Lean insbesondere wurde nicht nur erfolgreich zum Verifizieren lange bekannter mathematischer Theoreme verwendet, sondern auch zur Unterstützung von aktueller mathematischer Forschung. Das Ziel des Lean-Projekts ist nichts weniger als die Arbeitsweise von Mathematikern grundlegend zu verändern, indem mit dem Computer formalisierte Beweise eine praktible Alternative zu solchen mit Stift und Papier werden sollen. Aufwändige manuelle Gutachten zur Korrektheit von Beweisen wären damit hinfällig und gleichzeitig wäre garantiert, dass alle nötigen Beweisschritte exakt erfasst sind, statt der Interpretation und dem Hintergrundwissen des Lesers überlassen zu sein. Um dieses Ziel zu erreichen, sind jedoch noch weitere Fortschritte hinsichtlich Effizienz und Nutzbarkeit von Theorembeweisern nötig. Als Schritt in Richtung dieses Ziels beschreibt diese Dissertation eine neue, vollständig erweiterbare Theorembeweiser-Benutzerschnittstelle ("frontend") im Rahmen von Lean 4, der nächsten Version von Lean. Aufgabe dieser Benutzerschnittstelle ist die textuelle Beschreibung und Entgegennahme der Beweiseingabe in einer Syntax, die mehrere teils widersprüchliche Ziele optimieren sollte: Kompaktheit, Lesbarkeit für menschliche Benutzer und Eindeutigkeit in der Interpretation durch den Theorembeweiser. Da in der geschriebenen Mathematik eine umfangreiche Menge an verschiedenen Notationen existiert, die von Jahr zu Jahr weiter wächst und sich gleichzeitig zwischen verschiedenen Feldern, Autoren oder sogar einzelnen Arbeiten unterscheiden kann, muss solch eine Schnittstelle es Benutzern erlauben, sie jederzeit mit neuen, ausdrucksfähigen Notationen zu erweitern und ihnen mit flexiblen Regeln Bedeutung zuzuschreiben. Dieser Wunsch nach Flexibilität der Eingabesprache lässt sich weiterhin auch auf der Ebene der einzelnen Beweisschritte ("Taktiken") sowie höheren Ebenen der Beweis- und Programmorganisation wiederfinden. Den Kernteil dieser gewünschten Erweiterbarkeit habe ich mit einem ausdrucksstarken Makrosystem für Lean realisiert, mit dem sich sowohl einfach Syntaxtransformationen ("syntaktischer Zucker") also auch komplexe, typgesteuerte Übersetzung in die Kernsprache des Beweisers ausdrücken lassen. Das Makrosystem basiert auf einem neuartigen Algorithmus für Makrohygiene, basierend auf dem der Lisp-Sprache Racket und von mir an die spezifischen Anforderungen von Theorembeweisern angepasst, dessen Aufgabe es ist zu gewährleisten, dass lexikalische Geltungsbereiche von Bezeichnern selbst für komplexe Makros wie intuitiv erwartet funktionieren. Besonders habe ich beim Entwurf des Makrosystems darauf geachtet, das System einfach zugänglich zu gestalten, indem mehrere Abstraktionsebenen bereitgestellt werden, die sich in ihrer Ausdrucksstärke unterscheiden, aber auf den gleichen fundamentalen Prinzipien wie der erwähnten Makrohygiene beruhen. Als ein Anwendungsbeispiel des Makrosystems beschreibe ich eine Erweiterung der aus Haskell bekannten "do"-Notation um weitere imperative Sprachfeatures. Die erweiterte Syntax ist in Lean 4 eingeflossen und hat grundsätzlich die Art und Weise verändert, wie sowohl Entwickler als auch Benutzer monadischen, aber auch puren Code schreiben. Das Makrosystem stellt das "Herz" des erweiterbaren Frontends dar, ist gleichzeitig aber auch eng mit anderen Softwarekomponenten innerhalb der Benutzerschnittstelle verknüpft oder von ihnen abhängig. Ich stelle das gesamte Frontend und das umgebende Lean-System vor mit Fokus auf Teilen, an denen ich maßgeblich mitgewirkt habe. Schließlich beschreibe ich noch ein effizientes Referenzzählungsschema für funktionale Programmierung, welches eine Neuimplementierung von Lean in Lean selbst und damit das erweiterbare Frontend erst ermöglicht hat. Spezifische Optimierungen darin zur Wiederverwendung von Allokationen vereinen, ähnlich wie die erweiterte do-Notation, die Vorteile von imperativer und pur funktionaler Programmierung in einem neuen Paradigma, das ich "pure imperative Programmierung" nenne
    corecore