5,463 research outputs found

    A Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor Networks

    Full text link
    Wireless Sensor Networks (WSNs) have become very popular and are being used in many application domains (e.g. smart cities, security, gaming and agriculture). Virtualized WSNs allow the same WSN to be shared by multiple applications. Semantic applications are situation-aware and can potentially play a critical role in virtualized WSNs. However, provisioning them in such settings remains a challenge. The key reason is that semantic applications provisioning mandates data annotation. Unfortunately it is no easy task to annotate data collected in virtualized WSNs. This paper proposes a data annotation architecture for semantic applications in virtualized heterogeneous WSNs. The architecture uses overlays as the cornerstone, and we have built a prototype in the cloud environment using Google App Engine. The early performance measurements are also presented.Comment: This paper has been accepted for presentation in main technical session of 14th IFIP/IEEE Symposium on Integrated Network and Service Management (IM 2015) to be held on 11-15 May, 2015, Ottawa, Canad

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Modelling electronic service systems using UML

    Get PDF
    This paper presents a profile for modelling systems of electronic services using UML. Electronic services encapsulate business services, an organisational unit focused on delivering benefit to a consumer, to enhance communication, coordination and information management. Our profile is based on a formal, workflow-oriented description of electronic services that is abstracted from particular implementation technologies. Resulting models provide the basis for a formal analysis to verify behavioural properties of services. The models can also relate services to management components, including workflow managers and Electronic Service Management Systems (ESMSs), a novel concept drawn from experience of HP Service Composer and DySCo (Dynamic Service Composer), providing the starting point for integration and implementation tasks. Their UML basis and platform-independent nature is consistent with a Model-Driven Architecture (MDA) development strategy, appropriate to the challenge of developing electronic service systems using heterogeneous technology, and incorporating legacy systems

    Bringing Semantic Services to Real World Objects

    Get PDF
    The last few years have seen the emergence of two parallel trends: the first of such trends is set by technologies such as Near Field Communication, 2D Bar codes and RFID that support the association of digital information with virtually every object. By using these technologies, ordinary objects such as coffee mugs or advertisement posters provide digital information that can be easily processed. The second trend is set by (semantic) Web services that provide a way to automatically invoke functionalities across the Internet lowering interoperability barriers. The PERCI system, discussed in the article, provides a bridge between these two technologies allowing the invocation of Web services using the information gathered from the tags to effectively transform every object in a service proxy.</p
    • …
    corecore