340 research outputs found

    Course Description

    Get PDF

    Tensor Learning for Recovering Missing Information: Algorithms and Applications on Social Media

    Get PDF
    Real-time social systems like Facebook, Twitter, and Snapchat have been growing rapidly, producing exabytes of data in different views or aspects. Coupled with more and more GPS-enabled sharing of videos, images, blogs, and tweets that provide valuable information regarding “who”, “where”, “when” and “what”, these real-time human sensor data promise new research opportunities to uncover models of user behavior, mobility, and information sharing. These real-time dynamics in social systems usually come in multiple aspects, which are able to help better understand the social interactions of the underlying network. However, these multi-aspect datasets are often raw and incomplete owing to various unpredictable or unavoidable reasons; for instance, API limitations and data sampling policies can lead to an incomplete (and often biased) perspective on these multi-aspect datasets. This missing data could raise serious concerns such as biased estimations on structural properties of the network and properties of information cascades in social networks. In order to recover missing values or information in social systems, we identify “4S” challenges: extreme sparsity of the observed multi-aspect datasets, adoption of rich side information that is able to describe the similarities of entities, generation of robust models rather than limiting them on specific applications, and scalability of models to handle real large-scale datasets (billions of observed entries). With these challenges in mind, this dissertation aims to develop scalable and interpretable tensor-based frameworks, algorithms and methods for recovering missing information on social media. In particular, this dissertation research makes four unique contributions: _ The first research contribution of this dissertation research is to propose a scalable framework based on low-rank tensor learning in the presence of incomplete information. Concretely, we formally define the problem of recovering the spatio-temporal dynamics of online memes and tackle this problem by proposing a novel tensor-based factorization approach based on the alternative direction method of multipliers (ADMM) with the integration of the latent relationships derived from contextual information among locations, memes, and times. _ The second research contribution of this dissertation research is to evaluate the generalization of the proposed tensor learning framework and extend it to the recommendation problem. In particular, we develop a novel tensor-based approach to solve the personalized expert recommendation by integrating both the latent relationships between homogeneous entities (e.g., users and users, experts and experts) and the relationships between heterogeneous entities (e.g., users and experts, topics and experts) from the geo-spatial, topical, and social contexts. _ The third research contribution of this dissertation research is to extend the proposed tensor learning framework to the user topical profiling problem. Specifically, we propose a tensor-based contextual regularization model embedded into a matrix factorization framework, which leverages the social, textual, and behavioral contexts across users, in order to overcome identified challenges. _ The fourth research contribution of this dissertation research is to scale up the proposed tensor learning framework to be capable of handling real large-scale datasets that are too big to fit in the main memory of a single machine. Particularly, we propose a novel distributed tensor completion algorithm with the trace-based regularization of the auxiliary information based on ADMM under the proposed tensor learning framework, which is designed to scale up to real large-scale tensors (e.g., billions of entries) by efficiently computing auxiliary variables, minimizing intermediate data, and reducing the workload of updating new tensors

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Tensor Learning for Recovering Missing Information: Algorithms and Applications on Social Media

    Get PDF
    Real-time social systems like Facebook, Twitter, and Snapchat have been growing rapidly, producing exabytes of data in different views or aspects. Coupled with more and more GPS-enabled sharing of videos, images, blogs, and tweets that provide valuable information regarding “who”, “where”, “when” and “what”, these real-time human sensor data promise new research opportunities to uncover models of user behavior, mobility, and information sharing. These real-time dynamics in social systems usually come in multiple aspects, which are able to help better understand the social interactions of the underlying network. However, these multi-aspect datasets are often raw and incomplete owing to various unpredictable or unavoidable reasons; for instance, API limitations and data sampling policies can lead to an incomplete (and often biased) perspective on these multi-aspect datasets. This missing data could raise serious concerns such as biased estimations on structural properties of the network and properties of information cascades in social networks. In order to recover missing values or information in social systems, we identify “4S” challenges: extreme sparsity of the observed multi-aspect datasets, adoption of rich side information that is able to describe the similarities of entities, generation of robust models rather than limiting them on specific applications, and scalability of models to handle real large-scale datasets (billions of observed entries). With these challenges in mind, this dissertation aims to develop scalable and interpretable tensor-based frameworks, algorithms and methods for recovering missing information on social media. In particular, this dissertation research makes four unique contributions: _ The first research contribution of this dissertation research is to propose a scalable framework based on low-rank tensor learning in the presence of incomplete information. Concretely, we formally define the problem of recovering the spatio-temporal dynamics of online memes and tackle this problem by proposing a novel tensor-based factorization approach based on the alternative direction method of multipliers (ADMM) with the integration of the latent relationships derived from contextual information among locations, memes, and times. _ The second research contribution of this dissertation research is to evaluate the generalization of the proposed tensor learning framework and extend it to the recommendation problem. In particular, we develop a novel tensor-based approach to solve the personalized expert recommendation by integrating both the latent relationships between homogeneous entities (e.g., users and users, experts and experts) and the relationships between heterogeneous entities (e.g., users and experts, topics and experts) from the geo-spatial, topical, and social contexts. _ The third research contribution of this dissertation research is to extend the proposed tensor learning framework to the user topical profiling problem. Specifically, we propose a tensor-based contextual regularization model embedded into a matrix factorization framework, which leverages the social, textual, and behavioral contexts across users, in order to overcome identified challenges. _ The fourth research contribution of this dissertation research is to scale up the proposed tensor learning framework to be capable of handling real large-scale datasets that are too big to fit in the main memory of a single machine. Particularly, we propose a novel distributed tensor completion algorithm with the trace-based regularization of the auxiliary information based on ADMM under the proposed tensor learning framework, which is designed to scale up to real large-scale tensors (e.g., billions of entries) by efficiently computing auxiliary variables, minimizing intermediate data, and reducing the workload of updating new tensors

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network

    Get PDF
    Topological evolution over time in a dynamic network triggers both the addition and deletion of actors and the links among them. A dynamic network can be represented as a time series of network snapshots where each snapshot represents the state of the network over an interval of time (for example, a minute, hour or day). The duration of each snapshot denotes the temporal scale/sliding window of the dynamic network and all the links within the duration of the window are aggregated together irrespective of their order in time. The inherent trade-off in selecting the timescale in analysing dynamic networks is that choosing a short temporal window may lead to chaotic changes in network topology and measures (for example, the actors’ centrality measures and the average path length); however, choosing a long window may compromise the study and the investigation of network dynamics. Therefore, to facilitate the analysis and understand different patterns of actor-oriented evolutionary aspects, it is necessary to define an optimal window length (temporal duration) with which to sample a dynamic network. In addition to determining the optical temporal duration, another key task for understanding the dynamics of evolving networks is being able to predict the likelihood of future links among pairs of actors given the existing states of link structure at present time. This phenomenon is known as the link prediction problem in network science. Instead of considering a static state of a network where the associated topology does not change, dynamic link prediction attempts to predict emerging links by considering different types of historical/temporal information, for example the different types of temporal evolutions experienced by the actors in a dynamic network due to the topological evolution over time, known as actor dynamicities. Although there has been some success in developing various methodologies and metrics for the purpose of dynamic link prediction, mining actor-oriented evolutions to address this problem has received little attention from the research community. In addition to this, the existing methodologies were developed without considering the sampling window size of the dynamic network, even though the sampling duration has a large impact on mining the network dynamics of an evolutionary network. Therefore, although the principal focus of this thesis is link prediction in dynamic networks, the optimal sampling window determination was also considered

    Modeling media as latent semantics based on cognitive components

    Get PDF

    From specialists to generalists : inductive biases of deep learning for higher level cognition

    Full text link
    Les rĂ©seaux de neurones actuels obtiennent des rĂ©sultats de pointe dans une gamme de domaines problĂ©matiques difficiles. Avec suffisamment de donnĂ©es et de calculs, les rĂ©seaux de neurones actuels peuvent obtenir des rĂ©sultats de niveau humain sur presque toutes les tĂąches. En ce sens, nous avons pu former des spĂ©cialistes capables d'effectuer trĂšs bien une tĂąche particuliĂšre, que ce soit le jeu de Go, jouer Ă  des jeux Atari, manipuler le cube Rubik, mettre des lĂ©gendes sur des images ou dessiner des images avec des lĂ©gendes. Le prochain dĂ©fi pour l'IA est de concevoir des mĂ©thodes pour former des gĂ©nĂ©ralistes qui, lorsqu'ils sont exposĂ©s Ă  plusieurs tĂąches pendant l'entraĂźnement, peuvent s'adapter rapidement Ă  de nouvelles tĂąches inconnues. Sans aucune hypothĂšse sur la distribution gĂ©nĂ©ratrice de donnĂ©es, il peut ne pas ĂȘtre possible d'obtenir une meilleure gĂ©nĂ©ralisation et une meilleure adaptation Ă  de nouvelles tĂąches (inconnues). Les rĂ©seaux de neurones actuels obtiennent des rĂ©sultats de pointe dans une gamme de domaines problĂ©matiques difficiles. Une possibilitĂ© fascinante est que l'intelligence humaine et animale puisse ĂȘtre expliquĂ©e par quelques principes, plutĂŽt qu'une encyclopĂ©die de faits. Si tel Ă©tait le cas, nous pourrions plus facilement Ă  la fois comprendre notre propre intelligence et construire des machines intelligentes. Tout comme en physique, les principes eux-mĂȘmes ne suffiraient pas Ă  prĂ©dire le comportement de systĂšmes complexes comme le cerveau, et des calculs importants pourraient ĂȘtre nĂ©cessaires pour simuler l'intelligence humaine. De plus, nous savons que les vrais cerveaux intĂšgrent des connaissances a priori dĂ©taillĂ©es spĂ©cifiques Ă  une tĂąche qui ne pourraient pas tenir dans une courte liste de principes simples. Nous pensons donc que cette courte liste explique plutĂŽt la capacitĂ© des cerveaux Ă  apprendre et Ă  s'adapter efficacement Ă  de nouveaux environnements, ce qui est une grande partie de ce dont nous avons besoin pour l'IA. Si cette hypothĂšse de simplicitĂ© des principes Ă©tait correcte, cela suggĂ©rerait que l'Ă©tude du type de biais inductifs (une autre façon de penser aux principes de conception et aux a priori, dans le cas des systĂšmes d'apprentissage) que les humains et les animaux exploitent pourrait aider Ă  la fois Ă  clarifier ces principes et Ă  fournir source d'inspiration pour la recherche en IA. L'apprentissage en profondeur exploite dĂ©jĂ  plusieurs biais inductifs clĂ©s, et mon travail envisage une liste plus large, en se concentrant sur ceux qui concernent principalement le traitement cognitif de niveau supĂ©rieur. Mon travail se concentre sur la conception de tels modĂšles en y incorporant des hypothĂšses fortes mais gĂ©nĂ©rales (biais inductifs) qui permettent un raisonnement de haut niveau sur la structure du monde. Ce programme de recherche est Ă  la fois ambitieux et pratique, produisant des algorithmes concrets ainsi qu'une vision cohĂ©rente pour une recherche Ă  long terme vers la gĂ©nĂ©ralisation dans un monde complexe et changeant.Current neural networks achieve state-of-the-art results across a range of challenging problem domains. Given enough data, and computation, current neural networks can achieve human-level results on mostly any task. In the sense, that we have been able to train \textit{specialists} that can perform a particular task really well whether it's the game of GO, playing Atari games, Rubik's cube manipulation, image caption or drawing images given captions. The next challenge for AI is to devise methods to train \textit{generalists} that when exposed to multiple tasks during training can quickly adapt to new unknown tasks. Without any assumptions about the data generating distribution it may not be possible to achieve better generalization and adaption to new (unknown) tasks. A fascinating possibility is that human and animal intelligence could be explained by a few principles (rather than an encyclopedia). If that was the case, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behavior of complex systems like brains, and substantial computation might be needed to simulate human intelligence. In addition, we know that real brains incorporate some detailed task-specific a priori knowledge which could not fit in a short list of simple principles. So we think of that short list rather as explaining the ability of brains to learn and adapt efficiently to new environments, which is a great part of what we need for AI. If that simplicity of principles hypothesis was correct it would suggest that studying the kind of inductive biases (another way to think about principles of design and priors, in the case of learning systems) that humans and animals exploit could help both clarify these principles and provide inspiration for AI research. Deep learning already exploits several key inductive biases, and my work considers a larger list, focusing on those which concern mostly higher-level cognitive processing. My work focuses on designing such models by incorporating in them strong but general assumptions (inductive biases) that enable high-level reasoning about the structure of the world. This research program is both ambitious and practical, yielding concrete algorithms as well as a cohesive vision for long-term research towards generalization in a complex and changing world
    • 

    corecore