3,562 research outputs found

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Developing a Semantic-Driven Hybrid Segmentation Method for Point Clouds of 3D Shapes

    Get PDF
    With the rapid development of point cloud processing technologies and the availability of a wide range of 3D capturing devices, a geometric object from the real world can be directly represented digitally as a dense and fine point cloud. Decomposing a 3D shape represented in point cloud into meaningful parts has very important practical implications in the fields of computer graphics, virtual reality and mixed reality. In this paper, a semantic-driven automated hybrid segmentation method is proposed for 3D point cloud shapes. Our method consists of three stages: semantic clustering, variational merging, and region remerging. In the first stage, a new feature of point cloud, called Local Concave-Convex Histogram, is introduced to first extract saddle regions complying with the semantic boundary feature. All other types of regions are then aggregated according to this extracted feature. This stage often leads to multiple over-segmentation convex regions, which are then remerged by a variational method established based on the narrow-band theory. Finally, in order to recombine the regions with the approximate shapes, order relation is introduced to improve the weighting forms in calculating the conventional Shape Diameter Function. We have conducted extensive experiments with the Princeton Dataset. The results show that the proposed algorithm outperforms the state-of-the-art algorithms in this area. We have also applied the proposed algorithm to process the point cloud data acquired directly from the real 3D objects. It achieves excellent results too. These results demonstrate that the method proposed in this paper is effective and universal

    Object Discovery From a Single Unlabeled Image by Mining Frequent Itemset With Multi-scale Features

    Full text link
    TThe goal of our work is to discover dominant objects in a very general setting where only a single unlabeled image is given. This is far more challenge than typical co-localization or weakly-supervised localization tasks. To tackle this problem, we propose a simple but effective pattern mining-based method, called Object Location Mining (OLM), which exploits the advantages of data mining and feature representation of pre-trained convolutional neural networks (CNNs). Specifically, we first convert the feature maps from a pre-trained CNN model into a set of transactions, and then discovers frequent patterns from transaction database through pattern mining techniques. We observe that those discovered patterns, i.e., co-occurrence highlighted regions, typically hold appearance and spatial consistency. Motivated by this observation, we can easily discover and localize possible objects by merging relevant meaningful patterns. Extensive experiments on a variety of benchmarks demonstrate that OLM achieves competitive localization performance compared with the state-of-the-art methods. We also evaluate our approach compared with unsupervised saliency detection methods and achieves competitive results on seven benchmark datasets. Moreover, we conduct experiments on fine-grained classification to show that our proposed method can locate the entire object and parts accurately, which can benefit to improving the classification results significantly

    Segmentación multi-modal de imágenes RGB-D a partir de mapas de apariencia y de profundidad geométrica

    Get PDF
    Classical image segmentation algorithms exploit the detection of similarities and discontinuities of different visual cues to define and differentiate multiple regions of interest in images. However, due to the high variability and uncertainty of image data, producing accurate results is difficult. In other words, segmentation based just on color is often insufficient for a large percentage of real-life scenes. This work presents a novel multi-modal segmentation strategy that integrates depth and appearance cues from RGB-D images by building a hierarchical region-based representation, i.e., a multi-modal segmentation tree (MM-tree). For this purpose, RGB-D image pairs are represented in a complementary fashion by different segmentation maps. Based on color images, a color segmentation tree (C-tree) is created to obtain segmented and over-segmented maps. From depth images, two independent segmentation maps are derived by computing planar and 3D edge primitives. Then, an iterative region merging process can be used to locally group the previously obtained maps into the MM-tree. Finally, the top emerging MM-tree level coherently integrates the available information from depth and appearance maps. The experiments were conducted using the NYU-Depth V2 RGB-D dataset, which demonstrated the competitive results of our strategy compared to state-of-the-art segmentation methods. Specifically, using test images, our method reached average scores of 0.56 in Segmentation Covering and 2.13 in Variation of Information.Los algoritmos clásicos de segmentación de imágenes explotan la detección de similitudes y discontinuidades en diferentes señales visuales, para definir regiones de interés en imágenes. Sin embargo, debido a la alta variabilidad e incertidumbre en los datos de imagen, se dificulta generar resultados acertados. En otras palabras, la segmentación basada solo en color a menudo no es suficiente para un gran porcentaje de escenas reales. Este trabajo presenta una nueva estrategia de segmentación multi-modal que integra señales de profundidad y apariencia desde imágenes RGB-D, por medio de una representación jerárquica basada en regiones, es decir, un árbol de segmentación multi-modal (MM-tree). Para ello, la imagen RGB-D es descrita de manera complementaria por diferentes mapas de segmentación. A partir de la imagen de color, se implementa un árbol de segmentación de color (C-tree) para obtener mapas de segmentación y sobre-segmentación. Desde de la imagen de profundidad, se derivan dos mapas de segmentación independientes, los cuales se basan en el cálculo de primitivas de planos y de bordes 3D. Seguidamente, un proceso de fusión jerárquico de regiones permite agrupar de manera local los mapas obtenidos anteriormente en el MM-tree. Por último, el nivel superior emergente del MM-tree integra coherentemente la información disponible en los mapas de profundidad y apariencia. Los experimentos se realizaron con el conjunto de imágenes RGB-D del NYU-Depth V2, evidenciando resultados competitivos, con respecto a los métodos de segmentación del estado del arte. Específicamente, en las imágenes de prueba, se obtuvieron puntajes promedio de 0.56 en la medida de Segmentation Covering y 2.13 en Variation of Information

    Patch-based semantic labelling of images.

    Get PDF
    PhDThe work presented in this thesis is focused at associating a semantics to the content of an image, linking the content to high level semantic categories. The process can take place at two levels: either at image level, towards image categorisation, or at pixel level, in se- mantic segmentation or semantic labelling. To this end, an analysis framework is proposed, and the different steps of part (or patch) extraction, description and probabilistic modelling are detailed. Parts of different nature are used, and one of the contributions is a method to complement information associated to them. Context for parts has to be considered at different scales. Short range pixel dependences are accounted by associating pixels to larger patches. A Conditional Random Field, that is, a probabilistic discriminative graphical model, is used to model medium range dependences between neighbouring patches. Another contribution is an efficient method to consider rich neighbourhoods without having loops in the inference graph. To this end, weak neighbours are introduced, that is, neighbours whose label probability distribution is pre-estimated rather than mutable during the inference. Longer range dependences, that tend to make the inference problem intractable, are addressed as well. A novel descriptor based on local histograms of visual words has been proposed, meant to both complement the feature descriptor of the patches and augment the context awareness in the patch labelling process. Finally, an alternative approach to consider multiple scales in a hierarchical framework based on image pyramids is proposed. An image pyramid is a compositional representation of the image based on hierarchical clustering. All the presented contributions are extensively detailed throughout the thesis, and experimental results performed on publicly available datasets are reported to assess their validity. A critical comparison with the state of the art in this research area is also presented, and the advantage in adopting the proposed improvements are clearly highlighted

    Automatic image segmentation with superpixels and image-level labels.

    Get PDF
    Automatically and ideally segmenting the semantic region of each object in an image will greatly improve the precision and efficiency of subsequent image processing. We propose an automatic image segmentation algorithm based on superpixels and image-level labels. The proposed algorithm consists of three stages. At the stage of superpixel segmentation, we adaptively generate the initial number of superpixels using the minimum spatial distance and the total number of pixels in the image. At the stage of superpixel merging, we define small superpixels and directly merge the most similar superpixel pairs without considering the adjacency, until the number of superpixels equals the number of groupings contained in image-level labels. Furthermore, we add a stage of reclassification of disconnected regions after superpixel merging to enhance the connectivity of segmented regions. On the widely used Microsoft Research Cambridge data set and Berkeley segmentation data set, we demonstrate that our algorithm can produce high-precision image segmentation results compared with the state-of-the-art algorithms
    corecore