500,286 research outputs found

    User interaction and uptake challenges to successfully deploying Semantic Web technologies

    Get PDF
    The Semantic Web community could benefit greatly from 'eating its own dog food' in order to better understand the challenges and opportunities of a Semantic Web from the user perspective. In this paper we describe the deployment of Semantic Web applications and services at the 3rd European Semantic Web Conference (ESWC2006), before presenting results of an evaluation into how these technologies were experienced by delegates. Based on themes identified in the evaluation we highlight seven user interaction and uptake challenges raised by the conference experience, and discuss how these may generalize to the widespread deployment of Semantic Web technologies

    Machine translation evaluation resources and methods: a survey

    Get PDF
    We introduce the Machine Translation (MT) evaluation survey that contains both manual and automatic evaluation methods. The traditional human evaluation criteria mainly include the intelligibility, fidelity, fluency, adequacy, comprehension, and informativeness. The advanced human assessments include task-oriented measures, post-editing, segment ranking, and extended criteriea, etc. We classify the automatic evaluation methods into two categories, including lexical similarity scenario and linguistic features application. The lexical similarity methods contain edit distance, precision, recall, F-measure, and word order. The linguistic features can be divided into syntactic features and semantic features respectively. The syntactic features include part of speech tag, phrase types and sentence structures, and the semantic features include named entity, synonyms, textual entailment, paraphrase, semantic roles, and language models. The deep learning models for evaluation are very newly proposed. Subsequently, we also introduce the evaluation methods for MT evaluation including different correlation scores, and the recent quality estimation (QE) tasks for MT. This paper differs from the existing works\cite {GALEprogram2009, EuroMatrixProject2007} from several aspects, by introducing some recent development of MT evaluation measures, the different classifications from manual to automatic evaluation measures, the introduction of recent QE tasks of MT, and the concise construction of the content

    Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data

    Get PDF
    Semantic formalisms represent content in a uniform way according to ontologies. This enables manipulation and reasoning via automated means (e.g. Semantic Web services), but limits the user’s ability to explore the semantic data from a point of view that originates from knowledge representation motivations. We show how, for user consumption, a visualization of semantic data according to some easily graspable dimensions (e.g. space and time) provides effective sense-making of data. In this paper, we look holistically at the interaction between users and semantic data, and propose multiple visualization strategies and dynamic filters to support the exploration of semantic-rich data. We discuss a user evaluation and how interaction challenges could be overcome to create an effective user-centred framework for the visualization and manipulation of semantic data. The approach has been implemented and evaluated on a real company archive

    Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    Most progress in semantic segmentation reports on daytime images taken under favorable illumination conditions. We instead address the problem of semantic segmentation of nighttime images and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night via labeled synthetic images and unlabeled real images, both for progressively darker times of day, which exploits cross-time-of-day correspondences for the real images to guide the inference of their labels; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, designed for adverse conditions and including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, which comprises 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 151 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark to perform our novel evaluation. Experiments show that our guided curriculum adaptation significantly outperforms state-of-the-art methods on real nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can lead to better results on data with ambiguous content such as our nighttime benchmark and profit safety-oriented applications which involve invalid inputs.Comment: ICCV 2019 camera-read

    Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation. Experiments show that our map-guided curriculum adaptation significantly outperforms state-of-the-art methods on nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can improve results on data with ambiguous content such as our benchmark and profit safety-oriented applications involving invalid inputs.Comment: IEEE T-PAMI 202

    Evaluation of the Project Management Competences Based on the Semantic Networks

    Get PDF
    The paper presents the testing and evaluation facilities of the SinPers system. The SinPers is a web based learning environment in project management, capable of building and conducting a complete and personalized training cycle, from the definition of the learning objectives to the assessment of the learning results for each learner. The testing and evaluation facilities of SinPers system are based on the ontological approach. The educational ontology is mapped on a semantic network. Further, the semantic network is projected into a concept space graph. The semantic computability of the concept space graph is used to design the tests. The paper focuses on the applicability of the system in the certification, for the knowledge assessment, related to each element of competence. The semantic computability is used for differentiating between different certification levels.testing, assessment, ontology, semantic networks, certification.
    corecore