367 research outputs found

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Bench-Ranking: ettekirjutav analüüsimeetod suurte teadmiste graafide päringutele

    Get PDF
    Relatsiooniliste suurandmete (BD) töötlemisraamistike kasutamine suurte teadmiste graafide töötlemiseks kätkeb endas võimalust päringu jõudlust optimeerimida. Kaasaegsed BD-süsteemid on samas keerulised andmesüsteemid, mille konfiguratsioonid omavad olulist mõju jõudlusele. Erinevate raamistike ja konfiguratsioonide võrdlusuuringud pakuvad kogukonnale parimaid tavasid parema jõudluse saavutamiseks. Enamik neist võrdlusuuringutest saab liigitada siiski vaid kirjeldavaks ja diagnostiliseks analüütikaks. Lisaks puudub ühtne standard nende uuringute võrdlemiseks kvantitatiivselt järjestatud kujul. Veelgi enam, suurte graafide töötlemiseks vajalike konveierite kavandamine eeldab täiendavaid disainiotsuseid mis tulenevad mitteloomulikust (relatsioonilisest) graafi töötlemise paradigmast. Taolisi disainiotsuseid ei saa automaatselt langetada, nt relatsiooniskeemi, partitsioonitehnika ja salvestusvormingute valikut. Käesolevas töös käsitleme kuidas me antud uurimuslünga täidame. Esmalt näitame disainiotsuste kompromisside mõju BD-süsteemide jõudluse korratavusele suurte teadmiste graafide päringute tegemisel. Lisaks näitame BD-raamistike jõudluse kirjeldavate ja diagnostiliste analüüside piiranguid suurte graafide päringute tegemisel. Seejärel uurime, kuidas lubada ettekirjutavat analüütikat järjestamisfunktsioonide ja mitmemõõtmeliste optimeerimistehnikate (nn "Bench-Ranking") kaudu. See lähenemine peidab kirjeldava tulemusanalüüsi keerukuse, suunates praktiku otse teostatavate teadlike otsusteni.Leveraging relational Big Data (BD) processing frameworks to process large knowledge graphs yields a great interest in optimizing query performance. Modern BD systems are yet complicated data systems, where the configurations notably affect the performance. Benchmarking different frameworks and configurations provides the community with best practices for better performance. However, most of these benchmarking efforts are classified as descriptive and diagnostic analytics. Moreover, there is no standard for comparing these benchmarks based on quantitative ranking techniques. Moreover, designing mature pipelines for processing big graphs entails considering additional design decisions that emerge with the non-native (relational) graph processing paradigm. Those design decisions cannot be decided automatically, e.g., the choice of the relational schema, partitioning technique, and storage formats. Thus, in this thesis, we discuss how our work fills this timely research gap. Particularly, we first show the impact of those design decisions’ trade-offs on the BD systems’ performance replicability when querying large knowledge graphs. Moreover, we showed the limitations of the descriptive and diagnostic analyses of BD frameworks’ performance for querying large graphs. Thus, we investigate how to enable prescriptive analytics via ranking functions and Multi-Dimensional optimization techniques (called ”Bench-Ranking”). This approach abstracts out from the complexity of descriptive performance analysis, guiding the practitioner directly to actionable informed decisions.https://www.ester.ee/record=b553332

    Mobile Edge Computing Empowers Internet of Things

    Full text link
    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations

    A survey on the development status and application prospects of knowledge graph in smart grids

    Full text link
    With the advent of the electric power big data era, semantic interoperability and interconnection of power data have received extensive attention. Knowledge graph technology is a new method describing the complex relationships between concepts and entities in the objective world, which is widely concerned because of its robust knowledge inference ability. Especially with the proliferation of measurement devices and exponential growth of electric power data empowers, electric power knowledge graph provides new opportunities to solve the contradictions between the massive power resources and the continuously increasing demands for intelligent applications. In an attempt to fulfil the potential of knowledge graph and deal with the various challenges faced, as well as to obtain insights to achieve business applications of smart grids, this work first presents a holistic study of knowledge-driven intelligent application integration. Specifically, a detailed overview of electric power knowledge mining is provided. Then, the overview of the knowledge graph in smart grids is introduced. Moreover, the architecture of the big knowledge graph platform for smart grids and critical technologies are described. Furthermore, this paper comprehensively elaborates on the application prospects leveraged by knowledge graph oriented to smart grids, power consumer service, decision-making in dispatching, and operation and maintenance of power equipment. Finally, issues and challenges are summarised.Comment: IET Generation, Transmission & Distributio

    Scalable Data Integration for Linked Data

    Get PDF
    Linked Data describes an extensive set of structured but heterogeneous datasources where entities are connected by formal semantic descriptions. In thevision of the Semantic Web, these semantic links are extended towards theWorld Wide Web to provide as much machine-readable data as possible forsearch queries. The resulting connections allow an automatic evaluation to findnew insights into the data. Identifying these semantic connections betweentwo data sources with automatic approaches is called link discovery. We derivecommon requirements and a generic link discovery workflow based on similaritiesbetween entity properties and associated properties of ontology concepts. Mostof the existing link discovery approaches disregard the fact that in times ofBig Data, an increasing volume of data sources poses new demands on linkdiscovery. In particular, the problem of complex and time-consuming linkdetermination escalates with an increasing number of intersecting data sources.To overcome the restriction of pairwise linking of entities, holistic clusteringapproaches are needed to link equivalent entities of multiple data sources toconstruct integrated knowledge bases. In this context, the focus on efficiencyand scalability is essential. For example, reusing existing links or backgroundinformation can help to avoid redundant calculations. However, when dealingwith multiple data sources, additional data quality problems must also be dealtwith. This dissertation addresses these comprehensive challenges by designingholistic linking and clustering approaches that enable reuse of existing links.Unlike previous systems, we execute the complete data integration workflowvia a distributed processing system. At first, the LinkLion portal will beintroduced to provide existing links for new applications. These links act asa basis for a physical data integration process to create a unified representationfor equivalent entities from many data sources. We then propose a holisticclustering approach to form consolidated clusters for same real-world entitiesfrom many different sources. At the same time, we exploit the semantic typeof entities to improve the quality of the result. The process identifies errorsin existing links and can find numerous additional links. Additionally, theentity clustering has to react to the high dynamics of the data. In particular,this requires scalable approaches for continuously growing data sources withmany entities as well as additional new sources. Previous entity clusteringapproaches are mostly static, focusing on the one-time linking and clustering ofentities from few sources. Therefore, we propose and evaluate new approaches for incremental entity clustering that supports the continuous addition of newentities and data sources. To cope with the ever-increasing number of LinkedData sources, efficient and scalable methods based on distributed processingsystems are required. Thus we propose distributed holistic approaches to linkmany data sources based on a clustering of entities that represent the samereal-world object. The implementation is realized on Apache Flink. In contrastto previous approaches, we utilize efficiency-enhancing optimizations for bothdistributed static and dynamic clustering. An extensive comparative evaluationof the proposed approaches with various distributed clustering strategies showshigh effectiveness for datasets from multiple domains as well as scalability on amulti-machine Apache Flink cluster

    Metadata-driven data integration

    Get PDF
    Cotutela: Universitat Politècnica de Catalunya i Université Libre de Bruxelles, IT4BI-DC programme for the joint Ph.D. degree in computer science.Data has an undoubtable impact on society. Storing and processing large amounts of available data is currently one of the key success factors for an organization. Nonetheless, we are recently witnessing a change represented by huge and heterogeneous amounts of data. Indeed, 90% of the data in the world has been generated in the last two years. Thus, in order to carry on these data exploitation tasks, organizations must first perform data integration combining data from multiple sources to yield a unified view over them. Yet, the integration of massive and heterogeneous amounts of data requires revisiting the traditional integration assumptions to cope with the new requirements posed by such data-intensive settings. This PhD thesis aims to provide a novel framework for data integration in the context of data-intensive ecosystems, which entails dealing with vast amounts of heterogeneous data, from multiple sources and in their original format. To this end, we advocate for an integration process consisting of sequential activities governed by a semantic layer, implemented via a shared repository of metadata. From an stewardship perspective, this activities are the deployment of a data integration architecture, followed by the population of such shared metadata. From a data consumption perspective, the activities are virtual and materialized data integration, the former an exploratory task and the latter a consolidation one. Following the proposed framework, we focus on providing contributions to each of the four activities. We begin proposing a software reference architecture for semantic-aware data-intensive systems. Such architecture serves as a blueprint to deploy a stack of systems, its core being the metadata repository. Next, we propose a graph-based metadata model as formalism for metadata management. We focus on supporting schema and data source evolution, a predominant factor on the heterogeneous sources at hand. For virtual integration, we propose query rewriting algorithms that rely on the previously proposed metadata model. We additionally consider semantic heterogeneities in the data sources, which the proposed algorithms are capable of automatically resolving. Finally, the thesis focuses on the materialized integration activity, and to this end, proposes a method to select intermediate results to materialize in data-intensive flows. Overall, the results of this thesis serve as contribution to the field of data integration in contemporary data-intensive ecosystems.Les dades tenen un impacte indubtable en la societat. La capacitat d’emmagatzemar i processar grans quantitats de dades disponibles és avui en dia un dels factors claus per l’èxit d’una organització. No obstant, avui en dia estem presenciant un canvi representat per grans volums de dades heterogenis. En efecte, el 90% de les dades mundials han sigut generades en els últims dos anys. Per tal de dur a terme aquestes tasques d’explotació de dades, les organitzacions primer han de realitzar una integració de les dades, combinantles a partir de diferents fonts amb l’objectiu de tenir-ne una vista unificada d’elles. Per això, aquest fet requereix reconsiderar les assumpcions tradicionals en integració amb l’objectiu de lidiar amb els requisits imposats per aquests sistemes de tractament massiu de dades. Aquesta tesi doctoral té com a objectiu proporcional un nou marc de treball per a la integració de dades en el context de sistemes de tractament massiu de dades, el qual implica lidiar amb una gran quantitat de dades heterogènies, provinents de múltiples fonts i en el seu format original. Per això, proposem un procés d’integració compost d’una seqüència d’activitats governades per una capa semàntica, la qual és implementada a partir d’un repositori de metadades compartides. Des d’una perspectiva d’administració, aquestes activitats són el desplegament d’una arquitectura d’integració de dades, seguit per la inserció d’aquestes metadades compartides. Des d’una perspectiva de consum de dades, les activitats són la integració virtual i materialització de les dades, la primera sent una tasca exploratòria i la segona una de consolidació. Seguint el marc de treball proposat, ens centrem en proporcionar contribucions a cada una de les quatre activitats. La tesi inicia proposant una arquitectura de referència de software per a sistemes de tractament massiu de dades amb coneixement semàntic. Aquesta arquitectura serveix com a planell per a desplegar un conjunt de sistemes, sent el repositori de metadades al seu nucli. Posteriorment, proposem un model basat en grafs per a la gestió de metadades. Concretament, ens centrem en donar suport a l’evolució d’esquemes i fonts de dades, un dels factors predominants en les fonts de dades heterogènies considerades. Per a l’integració virtual, proposem algorismes de rescriptura de consultes que usen el model de metadades previament proposat. Com a afegitó, considerem heterogeneïtat semàntica en les fonts de dades, les quals els algorismes de rescriptura poden resoldre automàticament. Finalment, la tesi es centra en l’activitat d’integració materialitzada. Per això proposa un mètode per a seleccionar els resultats intermedis a materialitzar un fluxes de tractament intensiu de dades. En general, els resultats d’aquesta tesi serveixen com a contribució al camp d’integració de dades en els ecosistemes de tractament massiu de dades contemporanisLes données ont un impact indéniable sur la société. Le stockage et le traitement de grandes quantités de données disponibles constituent actuellement l’un des facteurs clés de succès d’une entreprise. Néanmoins, nous assistons récemment à un changement représenté par des quantités de données massives et hétérogènes. En effet, 90% des données dans le monde ont été générées au cours des deux dernières années. Ainsi, pour mener à bien ces tâches d’exploitation des données, les organisations doivent d’abord réaliser une intégration des données en combinant des données provenant de sources multiples pour obtenir une vue unifiée de ces dernières. Cependant, l’intégration de quantités de données massives et hétérogènes nécessite de revoir les hypothèses d’intégration traditionnelles afin de faire face aux nouvelles exigences posées par les systèmes de gestion de données massives. Cette thèse de doctorat a pour objectif de fournir un nouveau cadre pour l’intégration de données dans le contexte d’écosystèmes à forte intensité de données, ce qui implique de traiter de grandes quantités de données hétérogènes, provenant de sources multiples et dans leur format d’origine. À cette fin, nous préconisons un processus d’intégration constitué d’activités séquentielles régies par une couche sémantique, mise en oeuvre via un dépôt partagé de métadonnées. Du point de vue de la gestion, ces activités consistent à déployer une architecture d’intégration de données, suivies de la population de métadonnées partagées. Du point de vue de la consommation de données, les activités sont l’intégration de données virtuelle et matérialisée, la première étant une tâche exploratoire et la seconde, une tâche de consolidation. Conformément au cadre proposé, nous nous attachons à fournir des contributions à chacune des quatre activités. Nous commençons par proposer une architecture logicielle de référence pour les systèmes de gestion de données massives et à connaissance sémantique. Une telle architecture consiste en un schéma directeur pour le déploiement d’une pile de systèmes, le dépôt de métadonnées étant son composant principal. Ensuite, nous proposons un modèle de métadonnées basé sur des graphes comme formalisme pour la gestion des métadonnées. Nous mettons l’accent sur la prise en charge de l’évolution des schémas et des sources de données, facteur prédominant des sources hétérogènes sous-jacentes. Pour l’intégration virtuelle, nous proposons des algorithmes de réécriture de requêtes qui s’appuient sur le modèle de métadonnées proposé précédemment. Nous considérons en outre les hétérogénéités sémantiques dans les sources de données, que les algorithmes proposés sont capables de résoudre automatiquement. Enfin, la thèse se concentre sur l’activité d’intégration matérialisée et propose à cette fin une méthode de sélection de résultats intermédiaires à matérialiser dans des flux des données massives. Dans l’ensemble, les résultats de cette thèse constituent une contribution au domaine de l’intégration des données dans les écosystèmes contemporains de gestion de données massivesPostprint (published version

    대용량 의생물학 링크드 데이터를 위한 그래프 경로 탐색

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 치의과학과, 2017. 2. 김홍기.A drug could give rise to an adverse effect when combined with another particular drug. Addressing the underlying causes of the adverse effects is crucial for researchers to develop new drugs and for clinicians to prescribe medicine. Most existing approaches attempt to identify a set of target genes for which drugs are most effective, which provides insufficient information regarding these causes in terms of biological dynamics. Drugs should instead be considered as participants in activating a sequence of pathways that lead to some effects. I believe that the causes can better be understood by such linked pathways. Therefore, the purpose of this thesis is to develop algorithms and tools that can be used to discover a sequence of pathways that is activated by a particular drug combination. Furthermore, these algorithms are required to be scalable to manage massive biomedical Linked Data because up-to-date results of biomedical research are increasingly available in Linked Data. My hypothesis is that for a drug combination, when a drug up-regulates particular pathways in one direction and another drug down-regulates the same pathways in an opposite direction, adverse effects may occur by the drug combination. In this regard, the problem of revealing the causes of adverse effects of drug combinations is cast into the problem of discovering paths of a sequence of linked pathways that begins and ends at the genes that the given drugs target. Therefore, the scalable graph path discovery and matching algorithms are devised such that they work with a distributed computing environment. A pathway graph model is defined to integrate diverse biomedical datasets and a visualization tool is implemented to provide biomedical researchers and clinicians with intuitive interfaces for revealing the causes of the adverse effects. An algorithm for the shortest graph path discovery is proposed. An existing relational database approach is adapted to address the shortest graph path discovery in a distributed computing framework, in particular, Spark. The 2-hop reachability index is exploited to prune non-reachable paths during discovery computation. A vertex re-labeling technique is proposed to reduce the size of the 2-hop reachability index. Experimental results show that the proposed approach can successfully manage a large graph, which previous studies have failed to do. The discovered shortest graph path can be transformed into a graph path query to find another similar graph path. To achieve this, a MapReduce algorithm for graph path matching, based on multi-way joins, is proposed. A signature encoding technique is devised to prune intermediate data that is not relevant to the given query. Experiments against RDF (Resource Description Framework) datasets show that SPARQL query processing is faster than the state-of-the-art approaches. To adapt these algorithms into the problem of drug combinations causing adverse effects, a novel pathway graph model is proposed. In particular, a pathway relationship model is describeddirected links between pathways are established using protein–protein interactions and up/down regulations between genes. A prototype system based on a visualization framework is implemented and applied to a pathway graph that is built on the basis of several biomedical Linked Data (e.g. Reactome, KEGG, BioGrid, STRING and etc). A list of candidate drug combinations is obtained using the proposed system, which is compared with known drug-drug combinations available in DrugBank. A scalable graph path discovery solution is proposed in this thesis. Distributed computing frameworks and several index structures are exploited to efficiently handle massive graphs. A pathway graph model is defined and a prototype system for biomedical researchers is implemented to apply the algorithms to the problem of drug combinations causing adverse effects. In future works, the solution will be generalized to address the temporal organization of signaling pathways, thereby enabling the causes of adverse effects of drug combination to be better understood.I. Introduction 1 1.1 Background and Motivation 1 1.2 Contributions 4 1.2.1 Shortest Graph Path Discovery based on Reachability Index 4 1.2.2 Graph Path Matching based on Signature Encoding 5 1.2.3 Application to Biomedical Linked Data 6 1.3 Thesis Organization 6 II. Preliminaries and RelatedWork 9 2.1 Graph 9 2.2 Graph Path 10 2.3 Acyclic Transformation 11 2.4 Reachability 11 2.5 Distributed Computing Frameworks 12 2.6 RDF & SPARQL 12 2.7 SPARQL Processing Engines 14 III. Shortest Graph Path Discovery based on Reachability Index 17 3.1 Introduction 17 3.2 Space Reduction of Reachability Index 18 3.2.1 Introduction 18 3.2.2 Related Work 21 3.2.3 The Proposed Approach 24 3.2.4 Theoretical Analysis 25 3.2.5 Experimental Results 31 3.2.6 Conclusion and Future Work 33 3.3 Shortest Path Discovery 40 3.3.1 Introduction 40 3.3.2 FEM 41 3.3.3 FEM-SR 42 3.3.4 Theoretical Analysis 46 3.3.5 Experimental Results 51 3.3.6 Federated Shortest Path Discovery 53 3.4 Conclusion 55 IV. Graph Path Matching based on Signature Encoding 61 4.1 Introduction 61 4.2 Related Work 67 4.3 Limitations of MapReduce-based SPARQL engines 68 4.4 SigMR 69 4.5 Index Structure 70 4.5.1 Encoding Joined Triples 72 4.6 Index Building 76 4.7 Query Processing 83 4.8 Theoretical Analysis 88 4.8.1 Cost Model 89 4.8.2 Correctness 92 4.9 Experiments 94 4.9.1 Index Building Time and Space Requirements 95 4.9.2 Query Execution Time 98 4.9.3 Effect of Signature Encoding 100 4.9.4 Effect of the Size of Join Matrix 100 4.10 Conclusion 102 V. Application to Biomedical Linked Data 105 5.1 Introduction 105 5.2 Related Work 106 5.3 Data Model 108 5.4 CyHadoop 116 5.5 Scenario 119 5.6 Preliminary Results 120 5.7 Future Directions 121 VI. Conclusion 129 References 131 Appendix 141 초록 153Docto

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)
    corecore