25,388 research outputs found

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    New Frontiers of Quantified Self: Finding New Ways for Engaging Users in Collecting and Using Personal Data

    Get PDF
    In spite of the fast growth in the market of devices and applications that allow people to collect personal information, Quantified Self (QS) tools still present a variety of issues when they are used in everyday lives of common people. In this workshop we aim at exploring new ways for designing QS systems, by gathering different researchers in a unique place for imagining how the tracking, management, interpretation and visualization of personal data could be addressed in the future

    Quantum theory-inspired search

    Get PDF
    With the huge number and diversity of the users, the advertising products and services, the rapid growth of online multimedia resources, the context of information needs are even more broad and complex. Although research in search engine technology has led to various models over the past three decades, the investigation for effectively integrating the dimensions of context to deploy advanced search technology has been limited due to the lack of a unified modeling and evaluation framework. Quantum Theory (QT) has created new and unprecedented means for communicating and computing. Besides computer science, optics, electronics, physics, QT and search engine technology can be combined: interference in user interaction; entanglement in cognition; superposition in word meaning; non-classical probability in information ranking; complex vector spaces in multimedia search. This paper highlights our recent results on QT-inspired search engine technology

    Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research

    Get PDF
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the naming of genes, proteins, and other molecular structures, considerable efforts are under way to reduce the effects of the different naming conventions which have been spawned by different groups of researchers. Electronic patient records, too, increasingly involve the use of standardized terminologies, and tremendous efforts are currently being devoted to the creation of terminology resources that can meet the needs of a future era of personalized medicine, in which genomic and clinical data can be aligned in such a way that the corresponding information systems become interoperable

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed
    • …
    corecore