930 research outputs found

    Semantic and generative models for lossy text compression

    Get PDF
    The apparent divergence between the research paradigms of text and image compression has led us to consider the potential for applying methods developed for one domain to the other. This paper examines the idea of "lossy" text compression, which transmits an approximation to the input text rather than the text itself. In image coding, lossy techniques have proven to yield compression factors that are vastly superior to those of the best lossless schemes, and we show that this a also the case for text. Two different methods are described here, one inspired by the use of fractals in image compression. They can be combined into an extremely effective technique that provides much better compression than the present state of the art and yet preserves a reasonable degree of match between the original and received text. The major challenge for lossy text compression is identified as the reliable evaluation of the quality of this match

    Multi-Modality Deep Network for Extreme Learned Image Compression

    Full text link
    Image-based single-modality compression learning approaches have demonstrated exceptionally powerful encoding and decoding capabilities in the past few years , but suffer from blur and severe semantics loss at extremely low bitrates. To address this issue, we propose a multimodal machine learning method for text-guided image compression, in which the semantic information of text is used as prior information to guide image compression for better compression performance. We fully study the role of text description in different components of the codec, and demonstrate its effectiveness. In addition, we adopt the image-text attention module and image-request complement module to better fuse image and text features, and propose an improved multimodal semantic-consistent loss to produce semantically complete reconstructions. Extensive experiments, including a user study, prove that our method can obtain visually pleasing results at extremely low bitrates, and achieves a comparable or even better performance than state-of-the-art methods, even though these methods are at 2x to 4x bitrates of ours.Comment: 13 pages, 14 figures, accepted by AAAI 202

    An Introduction to Neural Data Compression

    Full text link
    Neural compression is the application of neural networks and other machine learning methods to data compression. Recent advances in statistical machine learning have opened up new possibilities for data compression, allowing compression algorithms to be learned end-to-end from data using powerful generative models such as normalizing flows, variational autoencoders, diffusion probabilistic models, and generative adversarial networks. The present article aims to introduce this field of research to a broader machine learning audience by reviewing the necessary background in information theory (e.g., entropy coding, rate-distortion theory) and computer vision (e.g., image quality assessment, perceptual metrics), and providing a curated guide through the essential ideas and methods in the literature thus far

    Perceptual Image Compression with Cooperative Cross-Modal Side Information

    Full text link
    The explosion of data has resulted in more and more associated text being transmitted along with images. Inspired by from distributed source coding, many works utilize image side information to enhance image compression. However, existing methods generally do not consider using text as side information to enhance perceptual compression of images, even though the benefits of multimodal synergy have been widely demonstrated in research. This begs the following question: How can we effectively transfer text-level semantic dependencies to help image compression, which is only available to the decoder? In this work, we propose a novel deep image compression method with text-guided side information to achieve a better rate-perception-distortion tradeoff. Specifically, we employ the CLIP text encoder and an effective Semantic-Spatial Aware block to fuse the text and image features. This is done by predicting a semantic mask to guide the learned text-adaptive affine transformation at the pixel level. Furthermore, we design a text-conditional generative adversarial networks to improve the perceptual quality of reconstructed images. Extensive experiments involving four datasets and ten image quality assessment metrics demonstrate that the proposed approach achieves superior results in terms of rate-perception trade-off and semantic distortion
    corecore