1,443 research outputs found

    Region-Aware Portrait Retouching with Sparse Interactive Guidance

    Full text link
    Portrait retouching aims to improve the aesthetic quality of input portrait photos and especially requires human-region priority. \pink{The deep learning-based methods largely elevate the retouching efficiency and provide promising retouched results. However, existing portrait retouching methods focus on automatic retouching, which treats all human-regions equally and ignores users' preferences for specific individuals,} thus suffering from limited flexibility in interactive scenarios. In this work, we emphasize the importance of users' intents and explore the interactive portrait retouching task. Specifically, we propose a region-aware retouching framework with two branches: an automatic branch and an interactive branch. \pink{The automatic branch involves an encoding-decoding process, which searches region candidates and performs automatic region-aware retouching without user guidance. The interactive branch encodes sparse user guidance into a priority condition vector and modulates latent features with a region selection module to further emphasize the user-specified regions. Experimental results show that our interactive branch effectively captures users' intents and generalizes well to unseen scenes with sparse user guidance, while our automatic branch also outperforms the state-of-the-art retouching methods due to improved region-awareness.

    Enabling Seamless Access to Digital Graphical Contents for Visually Impaired Individuals via Semantic-Aware Processing

    Get PDF
    Vision is one of the main sources through which people obtain information from the world, but unfortunately, visually-impaired people are partially or completely deprived of this type of information. With the help of computer technologies, people with visual impairment can independently access digital textual information by using text-to-speech and text-to-Braille software. However, in general, there still exists a major barrier for people who are blind to access the graphical information independently in real-time without the help of sighted people. In this paper, we propose a novel multi-level and multi-modal approach aiming at addressing this challenging and practical problem, with the key idea being semantic-aware visual-to-tactile conversion through semantic image categorization and segmentation, and semantic-driven image simplification. An end-to-end prototype system was built based on the approach. We present the details of the approach and the system, report sample experimental results with realistic data, and compare our approach with current typical practice

    Intuitive, Interactive Beard and Hair Synthesis with Generative Models

    Full text link
    We present an interactive approach to synthesizing realistic variations in facial hair in images, ranging from subtle edits to existing hair to the addition of complex and challenging hair in images of clean-shaven subjects. To circumvent the tedious and computationally expensive tasks of modeling, rendering and compositing the 3D geometry of the target hairstyle using the traditional graphics pipeline, we employ a neural network pipeline that synthesizes realistic and detailed images of facial hair directly in the target image in under one second. The synthesis is controlled by simple and sparse guide strokes from the user defining the general structural and color properties of the target hairstyle. We qualitatively and quantitatively evaluate our chosen method compared to several alternative approaches. We show compelling interactive editing results with a prototype user interface that allows novice users to progressively refine the generated image to match their desired hairstyle, and demonstrate that our approach also allows for flexible and high-fidelity scalp hair synthesis.Comment: To be presented in the 2020 Conference on Computer Vision and Pattern Recognition (CVPR 2020, Oral Presentation). Supplementary video can be seen at: https://www.youtube.com/watch?v=v4qOtBATrv

    Improving the Accuracy of Beauty Product Recommendations by Assessing Face Illumination Quality

    Full text link
    We focus on addressing the challenges in responsible beauty product recommendation, particularly when it involves comparing the product's color with a person's skin tone, such as for foundation and concealer products. To make accurate recommendations, it is crucial to infer both the product attributes and the product specific facial features such as skin conditions or tone. However, while many product photos are taken under good light conditions, face photos are taken from a wide range of conditions. The features extracted using the photos from ill-illuminated environment can be highly misleading or even be incompatible to be compared with the product attributes. Hence bad illumination condition can severely degrade quality of the recommendation. We introduce a machine learning framework for illumination assessment which classifies images into having either good or bad illumination condition. We then build an automatic user guidance tool which informs a user holding their camera if their illumination condition is good or bad. This way, the user is provided with rapid feedback and can interactively control how the photo is taken for their recommendation. Only a few studies are dedicated to this problem, mostly due to the lack of dataset that is large, labeled, and diverse both in terms of skin tones and light patterns. Lack of such dataset leads to neglecting skin tone diversity. Therefore, We begin by constructing a diverse synthetic dataset that simulates various skin tones and light patterns in addition to an existing facial image dataset. Next, we train a Convolutional Neural Network (CNN) for illumination assessment that outperforms the existing solutions using the synthetic dataset. Finally, we analyze how the our work improves the shade recommendation for various foundation products.Comment: 7 pages, 5 figures. Presented in FAccTRec202

    High-Quality Face Caricature via Style Translation

    Full text link
    Caricature is an exaggerated form of artistic portraiture that accentuates unique yet subtle characteristics of human faces. Recently, advancements in deep end-to-end techniques have yielded encouraging outcomes in capturing both style and elevated exaggerations in creating face caricatures. Most of these approaches tend to produce cartoon-like results that could be more practical for real-world applications. In this study, we proposed a high-quality, unpaired face caricature method that is appropriate for use in the real world and uses computer vision techniques and GAN models. We attain the exaggeration of facial features and the stylization of appearance through a two-step process: Face caricature generation and face caricature projection. The face caricature generation step creates new caricature face datasets from real images and trains a generative model using the real and newly created caricature datasets. The Face caricature projection employs an encoder trained with real and caricature faces with the pretrained generator to project real and caricature faces. We perform an incremental facial exaggeration from the real image to the caricature faces using the encoder and generator's latent space. Our projection preserves the facial identity, attributes, and expressions from the input image. Also, it accounts for facial occlusions, such as reading glasses or sunglasses, to enhance the robustness of our model. Furthermore, we conducted a comprehensive comparison of our approach with various state-of-the-art face caricature methods, highlighting our process's distinctiveness and exceptional realism.Comment: 14 pages, 21 figure

    Probabilistic framework for image understanding applications using Bayesian Networks

    Get PDF
    Machine learning algorithms have been successfully utilized in various systems/devices. They have the ability to improve the usability/quality of such systems in terms of intelligent user interface, fast performance, and more importantly, high accuracy. In this research, machine learning techniques are used in the field of image understanding, which is a common research area between image analysis and computer vision, to involve higher processing level of a target image to make sense of the scene captured in it. A general probabilistic framework for image understanding where topics associated with (i) collection of images to generate a comprehensive and valid database, (ii) generation of an unbiased ground-truth for the aforesaid database, (iii) selection of classification features and elimination of the redundant ones, and (iv) usage of such information to test a new sample set, are discussed. Two research projects have been developed as examples of the general image understanding framework; identification of region(s) of interest, and image segmentation evaluation. These techniques, in addition to others, are combined in an object-oriented rendering system for printing applications. The discussion included in this doctoral dissertation explores the means for developing such a system from an image understanding/ processing aspect. It is worth noticing that this work does not aim to develop a printing system. It is only proposed to add some essential features for current printing pipelines to achieve better visual quality while printing images/photos. Hence, we assume that image regions have been successfully extracted from the printed document. These images are used as input to the proposed object-oriented rendering algorithm where methodologies for color image segmentation, region-of-interest identification and semantic features extraction are employed. Probabilistic approaches based on Bayesian statistics have been utilized to develop the proposed image understanding techniques
    • …
    corecore