225 research outputs found

    ScaleTrotter: Illustrative Visual Travels Across Negative Scales

    Full text link
    We present ScaleTrotter, a conceptual framework for an interactive, multi-scale visualization of biological mesoscale data and, specifically, genome data. ScaleTrotter allows viewers to smoothly transition from the nucleus of a cell to the atomistic composition of the DNA, while bridging several orders of magnitude in scale. The challenges in creating an interactive visualization of genome data are fundamentally different in several ways from those in other domains like astronomy that require a multi-scale representation as well. First, genome data has intertwined scale levels---the DNA is an extremely long, connected molecule that manifests itself at all scale levels. Second, elements of the DNA do not disappear as one zooms out---instead the scale levels at which they are observed group these elements differently. Third, we have detailed information and thus geometry for the entire dataset and for all scale levels, posing a challenge for interactive visual exploration. Finally, the conceptual scale levels for genome data are close in scale space, requiring us to find ways to visually embed a smaller scale into a coarser one. We address these challenges by creating a new multi-scale visualization concept. We use a scale-dependent camera model that controls the visual embedding of the scales into their respective parents, the rendering of a subset of the scale hierarchy, and the location, size, and scope of the view. In traversing the scales, ScaleTrotter is roaming between 2D and 3D visual representations that are depicted in integrated visuals. We discuss, specifically, how this form of multi-scale visualization follows from the specific characteristics of the genome data and describe its implementation. Finally, we discuss the implications of our work to the general illustrative depiction of multi-scale data

    Measuring and improving the readability of network visualizations

    Get PDF
    Network data structures have been used extensively for modeling entities and their ties across such diverse disciplines as Computer Science, Sociology, Bioinformatics, Urban Planning, and Archeology. Analyzing networks involves understanding the complex relationships between entities as well as any attributes, statistics, or groupings associated with them. The widely used node-link visualization excels at showing the topology, attributes, and groupings simultaneously. However, many existing node-link visualizations are difficult to extract meaning from because of (1) the inherent complexity of the relationships, (2) the number of items designers try to render in limited screen space, and (3) for every network there are many potential unintelligible or even misleading visualizations. Automated layout algorithms have helped, but frequently generate ineffective visualizations even when used by expert analysts. Past work, including my own described herein, have shown there can be vast improvements in network visualizations, but no one can yet produce readable and meaningful visualizations for all networks. Since there is no single way to visualize all networks effectively, in this dissertation I investigate three complimentary strategies. First, I introduce a technique called motif simplification that leverages the repeating patterns or motifs in a network to reduce visual complexity. I replace common, high-payoff motifs with easily understandable glyphs that require less screen space, can reveal otherwise hidden relationships, and improve user performance on many network analysis tasks. Next, I present new Group-in-a-Box layouts that subdivide large, dense networks using attribute- or topology-based groupings. These layouts take group membership into account to more clearly show the ties within groups as well as the aggregate relationships between groups. Finally, I develop a set of readability metrics to measure visualization effectiveness and localize areas needing improvement. I detail optimization recommendations for specific user tasks, in addition to leveraging the readability metrics in a user-assisted layout optimization technique. This dissertation contributes an understanding of why some node-link visualizations are difficult to read, what measures of readability could help guide designers and users, and several promising strategies for improving readability which demonstrate that progress is possible. This work also opens several avenues of research, both technical and in user education

    From Molecules to the Masses : Visual Exploration, Analysis, and Communication of Human Physiology

    Get PDF
    Det overordnede målet med denne avhandlingen er tverrfaglig anvendelse av medisinske illustrasjons- og visualiseringsteknikker for å utforske, analysere og formidle aspekter ved fysiologi til publikum med ulik faglig nivå og bakgrunn. Fysiologi beskriver de biologiske prosessene som skjer i levende vesener over tid. Vitenskapen om fysiologi er kompleks, men samtidig kritisk for vår forståelse av hvordan levende organismer fungerer. Fysiologi dekker en stor bredde romlig-temporale skalaer og fordrer behovet for å kombinere og bygge bro mellom basalfagene (biologi, fysikk og kjemi) og medisin. De senere årene har det vært en eksplosjon av nye, avanserte eksperimentelle metoder for å detektere og karakterisere fysiologiske data. Volumet og kompleksiteten til fysiologiske data krever effektive strategier for visualisering for å komplementere dagens standard analyser. Hvilke tilnærminger som benyttes i visualiseringen må nøye balanseres og tilpasses formålet med bruken av dataene, enten dette er for å utforske dataene, analysere disse eller kommunisere og presentere dem. Arbeidet i denne avhandlingen bidrar med ny kunnskap innen teori, empiri, anvendelse og reproduserbarhet av visualiseringsmetoder innen fysiologi. Først i avhandlingen er en rapport som oppsummerer og utforsker dagens kunnskap om muligheter og utfordringer for visualisering innen fysiologi. Motivasjonen for arbeidet er behovet forskere innen visualiseringsfeltet, og forskere i ulike anvendelsesområder, har for en sammensatt oversikt over flerskala visualiseringsoppgaver og teknikker. Ved å bruke søk over et stort spekter av metodiske tilnærminger, er dette den første rapporten i sitt slag som kartlegger visualiseringsmulighetene innen fysiologi. I rapporten er faglitteraturen oppsummert slik at det skal være enkelt å gjøre oppslag innen ulike tema i rom-og-tid-skalaen, samtidig som litteraturen er delt inn i de tre høynivå visualiseringsoppgavene data utforsking, analyse og kommunikasjon. Dette danner et enkelt grunnlag for å navigere i litteraturen i feltet og slik danner rapporten et godt grunnlag for diskusjon og forskningsmuligheter innen feltet visualisering og fysiologi. Basert på arbeidet med rapporten var det særlig to områder som det er ønskelig for oss å fortsette å utforske: (1) utforskende analyse av mangefasetterte fysiologidata for ekspertbrukere, og (2) kommunikasjon av data til både eksperter og ikke-eksperter. Arbeidet vårt av mangefasetterte fysiologidata er oppsummert i to studier i avhandlingen. Hver studie omhandler prosesser som foregår på forskjellige romlig-temporale skalaer og inneholder konkrete eksempler på anvendelse av metodene vurdert av eksperter i feltet. I den første av de to studiene undersøkes konsentrasjonen av molekylære substanser (metabolitter) ut fra data innsamlet med magnetisk resonansspektroskopi (MRS), en avansert biokjemisk teknikk som brukes til å identifisere metabolske forbindelser i levende vev. Selv om MRS kan ha svært høy sensitivitet og spesifisitet i medisinske anvendelser, er analyseresultatene fra denne modaliteten abstrakte og vanskelige å forstå også for medisinskfaglige eksperter i feltet. Vår designstudie som undersøkte oppgavene og kravene til ekspertutforskende analyse av disse dataene førte til utviklingen av SpectraMosaic. Dette er en ny applikasjon som gjør det mulig for domeneeksperter å analysere konsentrasjonen av metabolitter normalisert for en hel kohort, eller etter prøveregion, individ, opptaksdato, eller status på hjernens aktivitetsnivå ved undersøkelsestidspunktet. I den andre studien foreslås en metode for å utføre utforskende analyser av flerdimensjonale fysiologiske data i motsatt ende av den romlig-temporale skalaen, nemlig på populasjonsnivå. En effektiv arbeidsflyt for utforskende dataanalyse må kritisk identifisere interessante mønstre og relasjoner, noe som blir stadig vanskeligere når dimensjonaliteten til dataene øker. Selv om dette delvis kan løses med eksisterende reduksjonsteknikker er det alltid en fare for at subtile mønstre kan gå tapt i reduksjonsprosessen. Isteden presenterer vi i studien DimLift, en iterativ dimensjonsreduksjonsteknikk som muliggjør brukeridentifikasjon av interessante mønstre og relasjoner som kan ligge subtilt i et datasett gjennom dimensjonale bunter. Nøkkelen til denne metoden er brukerens evne til å styre dimensjonalitetsreduksjonen slik at den følger brukerens egne undersøkelseslinjer. For videre å undersøke kommunikasjon til eksperter og ikke-eksperter, studeres i neste arbeid utformingen av visualiseringer for kommunikasjon til publikum med ulike nivåer av ekspertnivå. Det er naturlig å forvente at eksperter innen et emne kan ha ulike preferanser og kriterier for å vurdere en visuell kommunikasjon i forhold til et ikke-ekspertpublikum. Dette påvirker hvor effektivt et bilde kan benyttes til å formidle en gitt scenario. Med utgangspunkt i ulike teknikker innen biomedisinsk illustrasjon og visualisering, gjennomførte vi derfor en utforskende studie av kriteriene som publikum bruker når de evaluerer en biomedisinsk prosessvisualisering målrettet for kommunikasjon. Fra denne studien identifiserte vi muligheter for ytterligere konvergens av biomedisinsk illustrasjon og visualiseringsteknikker for mer målrettet visuell kommunikasjonsdesign. Særlig beskrives i større dybde utviklingen av semantisk konsistente retningslinjer for farging av molekylære scener. Hensikten med slike retningslinjer er å heve den vitenskapelige kompetansen til ikke-ekspertpublikum innen molekyler visualisering, som vil være spesielt relevant for kommunikasjon til befolkningen i forbindelse med folkehelseopplysning. All kode og empiriske funn utviklet i arbeidet med denne avhandlingen er åpen kildekode og tilgjengelig for gjenbruk av det vitenskapelige miljøet og offentligheten. Metodene og funnene presentert i denne avhandlingen danner et grunnlag for tverrfaglig biomedisinsk illustrasjon og visualiseringsforskning, og åpner flere muligheter for fortsatt arbeid med visualisering av fysiologiske prosesser.The overarching theme of this thesis is the cross-disciplinary application of medical illustration and visualization techniques to address challenges in exploring, analyzing, and communicating aspects of physiology to audiences with differing expertise. Describing the myriad biological processes occurring in living beings over time, the science of physiology is complex and critical to our understanding of how life works. It spans many spatio-temporal scales to combine and bridge the basic sciences (biology, physics, and chemistry) to medicine. Recent years have seen an explosion of new and finer-grained experimental and acquisition methods to characterize these data. The volume and complexity of these data necessitate effective visualizations to complement standard analysis practice. Visualization approaches must carefully consider and be adaptable to the user's main task, be it exploratory, analytical, or communication-oriented. This thesis contributes to the areas of theory, empirical findings, methods, applications, and research replicability in visualizing physiology. Our contributions open with a state-of-the-art report exploring the challenges and opportunities in visualization for physiology. This report is motivated by the need for visualization researchers, as well as researchers in various application domains, to have a centralized, multiscale overview of visualization tasks and techniques. Using a mixed-methods search approach, this is the first report of its kind to broadly survey the space of visualization for physiology. Our approach to organizing the literature in this report enables the lookup of topics of interest according to spatio-temporal scale. It further subdivides works according to any combination of three high-level visualization tasks: exploration, analysis, and communication. This provides an easily-navigable foundation for discussion and future research opportunities for audience- and task-appropriate visualization for physiology. From this report, we identify two key areas for continued research that begin narrowly and subsequently broaden in scope: (1) exploratory analysis of multifaceted physiology data for expert users, and (2) communication for experts and non-experts alike. Our investigation of multifaceted physiology data takes place over two studies. Each targets processes occurring at different spatio-temporal scales and includes a case study with experts to assess the applicability of our proposed method. At the molecular scale, we examine data from magnetic resonance spectroscopy (MRS), an advanced biochemical technique used to identify small molecules (metabolites) in living tissue that are indicative of metabolic pathway activity. Although highly sensitive and specific, the output of this modality is abstract and difficult to interpret. Our design study investigating the tasks and requirements for expert exploratory analysis of these data led to SpectraMosaic, a novel application enabling domain researchers to analyze any permutation of metabolites in ratio form for an entire cohort, or by sample region, individual, acquisition date, or brain activity status at the time of acquisition. A second approach considers the exploratory analysis of multidimensional physiological data at the opposite end of the spatio-temporal scale: population. An effective exploratory data analysis workflow critically must identify interesting patterns and relationships, which becomes increasingly difficult as data dimensionality increases. Although this can be partially addressed with existing dimensionality reduction techniques, the nature of these techniques means that subtle patterns may be lost in the process. In this approach, we describe DimLift, an iterative dimensionality reduction technique enabling user identification of interesting patterns and relationships that may lie subtly within a dataset through dimensional bundles. Key to this method is the user's ability to steer the dimensionality reduction technique to follow their own lines of inquiry. Our third question considers the crafting of visualizations for communication to audiences with different levels of expertise. It is natural to expect that experts in a topic may have different preferences and criteria to evaluate a visual communication relative to a non-expert audience. This impacts the success of an image in communicating a given scenario. Drawing from diverse techniques in biomedical illustration and visualization, we conducted an exploratory study of the criteria that audiences use when evaluating a biomedical process visualization targeted for communication. From this study, we identify opportunities for further convergence of biomedical illustration and visualization techniques for more targeted visual communication design. One opportunity that we discuss in greater depth is the development of semantically-consistent guidelines for the coloring of molecular scenes. The intent of such guidelines is to elevate the scientific literacy of non-expert audiences in the context of molecular visualization, which is particularly relevant to public health communication. All application code and empirical findings are open-sourced and available for reuse by the scientific community and public. The methods and findings presented in this thesis contribute to a foundation of cross-disciplinary biomedical illustration and visualization research, opening several opportunities for continued work in visualization for physiology.Doktorgradsavhandlin

    Optical flow estimation via steered-L1 norm

    Get PDF
    Global variational methods for estimating optical flow are among the best performing methods due to the subpixel accuracy and the ‘fill-in’ effect they provide. The fill-in effect allows optical flow displacements to be estimated even in low and untextured areas of the image. The estimation of such displacements are induced by the smoothness term. The L1 norm provides a robust regularisation term for the optical flow energy function with a very good performance for edge-preserving. However this norm suffers from several issues, among these is the isotropic nature of this norm which reduces the fill-in effect and eventually the accuracy of estimation in areas near motion boundaries. In this paper we propose an enhancement to the L1 norm that improves the fill-in effect for this smoothness term. In order to do this we analyse the structure tensor matrix and use its eigenvectors to steer the smoothness term into components that are ‘orthogonal to’ and ‘aligned with’ image structures. This is done in primal-dual formulation. Results show a reduced end-point error and improved accuracy compared to the conventional L1 norm

    Optical flow estimation via steered-L1 norm

    Get PDF
    Global variational methods for estimating optical flow are among the best performing methods due to the subpixel accuracy and the ‘fill-in’ effect they provide. The fill-in effect allows optical flow displacements to be estimated even in low and untextured areas of the image. The estimation of such displacements are induced by the smoothness term. The L1 norm provides a robust regularisation term for the optical flow energy function with a very good performance for edge-preserving. However this norm suffers from several issues, among these is the isotropic nature of this norm which reduces the fill-in effect and eventually the accuracy of estimation in areas near motion boundaries. In this paper we propose an enhancement to the L1 norm that improves the fill-in effect for this smoothness term. In order to do this we analyse the structure tensor matrix and use its eigenvectors to steer the smoothness term into components that are ‘orthogonal to’ and ‘aligned with’ image structures. This is done in primal-dual formulation. Results show a reduced end-point error and improved accuracy compared to the conventional L1 norm

    Visual analytics of multidimensional time-dependent trails:with applications in shape tracking

    Get PDF
    Lots of data collected for both scientific and non-scientific purposes have similar characteristics: changing over time with many different properties. For example, consider the trajectory of an airplane travelling from one location to the other. Not only does the airplane itself move over time, but its heading, height and speed are changing at the same time. During this research, we investigated different ways to collect and visualze data with these characteristics. One practical application being for an automated milking device which needs to be able to determine the position of a cow's teats. By visualizing all data which is generated during the tracking process we can acquire insights in the working of the tracking system and identify possibilites for improvement which should lead to better recognition of the teats by the machine. Another important result of the research is a method which can be used to efficiently process a large amount of trajectory data and visualize this in a simplified manner. This has lead to a system which can be used to show the movement of all airplanes around the world for a period of multiple weeks

    Stereoscopic bimanual interaction for 3D visualization

    Get PDF
    Virtual Environments (VE) are being widely used in various research fields for several decades such as 3D visualization, education, training and games. VEs have the potential to enhance the visualization and act as a general medium for human-computer interaction (HCI). However, limited research has evaluated virtual reality (VR) display technologies, monocular and binocular depth cues, for human depth perception of volumetric (non-polygonal) datasets. In addition, a lack of standardization of three-dimensional (3D) user interfaces (UI) makes it challenging to interact with many VE systems. To address these issues, this dissertation focuses on evaluation of effects of stereoscopic and head-coupled displays on depth judgment of volumetric dataset. It also focuses on evaluation of a two-handed view manipulation techniques which support simultaneous 7 degree-of-freedom (DOF) navigation (x,y,z + yaw,pitch,roll + scale) in a multi-scale virtual environment (MSVE). Furthermore, this dissertation evaluates auto-adjustment of stereo view parameters techniques for stereoscopic fusion problems in a MSVE. Next, this dissertation presents a bimanual, hybrid user interface which combines traditional tracking devices with computer-vision based "natural" 3D inputs for multi-dimensional visualization in a semi-immersive desktop VR system. In conclusion, this dissertation provides a guideline for research design for evaluating UI and interaction techniques

    Multidimensional projections for the visual exploration of multimedia data

    Get PDF
    Multidimensional data analysis is considerably important when dealing with such large and complex datasets. Among the possibilities when analyzing such kind of data, applying visualization techniques can help the user find and understand patters, trends and establish new goals. This thesis aims to present several visualization methods to interactively explore multidimensional datasets aimed from specialized to casual users, by making use of both static and dynamic representations created by multidimensional projections

    Visual analytics for relationships in scientific data

    Get PDF
    Domain scientists hope to address grand scientific challenges by exploring the abundance of data generated and made available through modern high-throughput techniques. Typical scientific investigations can make use of novel visualization tools that enable dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These general tools should be applicable to many disciplines: allowing biologists to develop an intuitive understanding of the structure of coexpression networks and discover genes that reside in critical positions of biological pathways, intelligence analysts to decompose social networks, and climate scientists to model extrapolate future climate conditions. By using a graph as a universal data representation of correlation, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool integrates techniques such as graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized B-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using real-world workflows from several large-scale studies. Parallel coordinates has proven to be a scalable visualization and navigation framework for multivariate data. However, when data with thousands of variables are at hand, we do not have a comprehensive solution to select the right set of variables and order them to uncover important or potentially insightful patterns. We present algorithms to rank axes based upon the importance of bivariate relationships among the variables and showcase the efficacy of the proposed system by demonstrating autonomous detection of patterns in a modern large-scale dataset of time-varying climate simulation
    corecore