14,279 research outputs found
DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments
Simultaneous Localization and Mapping (SLAM) is considered to be a
fundamental capability for intelligent mobile robots. Over the past decades,
many impressed SLAM systems have been developed and achieved good performance
under certain circumstances. However, some problems are still not well solved,
for example, how to tackle the moving objects in the dynamic environments, how
to make the robots truly understand the surroundings and accomplish advanced
tasks. In this paper, a robust semantic visual SLAM towards dynamic
environments named DS-SLAM is proposed. Five threads run in parallel in
DS-SLAM: tracking, semantic segmentation, local mapping, loop closing, and
dense semantic map creation. DS-SLAM combines semantic segmentation network
with moving consistency check method to reduce the impact of dynamic objects,
and thus the localization accuracy is highly improved in dynamic environments.
Meanwhile, a dense semantic octo-tree map is produced, which could be employed
for high-level tasks. We conduct experiments both on TUM RGB-D dataset and in
the real-world environment. The results demonstrate the absolute trajectory
accuracy in DS-SLAM can be improved by one order of magnitude compared with
ORB-SLAM2. It is one of the state-of-the-art SLAM systems in high-dynamic
environments. Now the code is available at our github:
https://github.com/ivipsourcecode/DS-SLAMComment: 7 pages, accepted at the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2018). Now the code is available at our
github: https://github.com/ivipsourcecode/DS-SLA
Volume-based Semantic Labeling with Signed Distance Functions
Research works on the two topics of Semantic Segmentation and SLAM
(Simultaneous Localization and Mapping) have been following separate tracks.
Here, we link them quite tightly by delineating a category label fusion
technique that allows for embedding semantic information into the dense map
created by a volume-based SLAM algorithm such as KinectFusion. Accordingly, our
approach is the first to provide a semantically labeled dense reconstruction of
the environment from a stream of RGB-D images. We validate our proposal using a
publicly available semantically annotated RGB-D dataset and a) employing ground
truth labels, b) corrupting such annotations with synthetic noise, c) deploying
a state of the art semantic segmentation algorithm based on Convolutional
Neural Networks.Comment: Submitted to PSIVT201
Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age
Simultaneous Localization and Mapping (SLAM)consists in the concurrent
construction of a model of the environment (the map), and the estimation of the
state of the robot moving within it. The SLAM community has made astonishing
progress over the last 30 years, enabling large-scale real-world applications,
and witnessing a steady transition of this technology to industry. We survey
the current state of SLAM. We start by presenting what is now the de-facto
standard formulation for SLAM. We then review related work, covering a broad
set of topics including robustness and scalability in long-term mapping, metric
and semantic representations for mapping, theoretical performance guarantees,
active SLAM and exploration, and other new frontiers. This paper simultaneously
serves as a position paper and tutorial to those who are users of SLAM. By
looking at the published research with a critical eye, we delineate open
challenges and new research issues, that still deserve careful scientific
investigation. The paper also contains the authors' take on two questions that
often animate discussions during robotics conferences: Do robots need SLAM? and
Is SLAM solved
CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction
Given the recent advances in depth prediction from Convolutional Neural
Networks (CNNs), this paper investigates how predicted depth maps from a deep
neural network can be deployed for accurate and dense monocular reconstruction.
We propose a method where CNN-predicted dense depth maps are naturally fused
together with depth measurements obtained from direct monocular SLAM. Our
fusion scheme privileges depth prediction in image locations where monocular
SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa.
We demonstrate the use of depth prediction for estimating the absolute scale of
the reconstruction, hence overcoming one of the major limitations of monocular
SLAM. Finally, we propose a framework to efficiently fuse semantic labels,
obtained from a single frame, with dense SLAM, yielding semantically coherent
scene reconstruction from a single view. Evaluation results on two benchmark
datasets show the robustness and accuracy of our approach.Comment: 10 pages, 6 figures, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), Hawaii, USA, June, 2017. The first two
authors contribute equally to this pape
Network Uncertainty Informed Semantic Feature Selection for Visual SLAM
In order to facilitate long-term localization using a visual simultaneous
localization and mapping (SLAM) algorithm, careful feature selection can help
ensure that reference points persist over long durations and the runtime and
storage complexity of the algorithm remain consistent. We present SIVO
(Semantically Informed Visual Odometry and Mapping), a novel
information-theoretic feature selection method for visual SLAM which
incorporates semantic segmentation and neural network uncertainty into the
feature selection pipeline. Our algorithm selects points which provide the
highest reduction in Shannon entropy between the entropy of the current state
and the joint entropy of the state, given the addition of the new feature with
the classification entropy of the feature from a Bayesian neural network. Each
selected feature significantly reduces the uncertainty of the vehicle state and
has been detected to be a static object (building, traffic sign, etc.)
repeatedly with a high confidence. This selection strategy generates a sparse
map which can facilitate long-term localization. The KITTI odometry dataset is
used to evaluate our method, and we also compare our results against ORB_SLAM2.
Overall, SIVO performs comparably to the baseline method while reducing the map
size by almost 70%.Comment: Published in: 2019 16th Conference on Computer and Robot Vision (CRV
- …
