1,532 research outputs found

    Decorrelation and shallow semantic patterns for distributional clustering of nouns and verbs

    Get PDF
    Distributional approximations to lexical semantics are very useful not only in helping the creation of lexical semantic resources (Kilgariff et al., 2004; Snow et al., 2006), but also when directly applied in tasks that can benefit from large-coverage semantic knowledge such as coreference resolution (Poesio et al., 1998; Gasperin and Vieira, 2004; Versley, 2007), word sense disambiguation (Mc- Carthy et al., 2004) or semantical role labeling (Gordon and Swanson, 2007). We present a model that is built from Webbased corpora using both shallow patterns for grammatical and semantic relations and a window-based approach, using singular value decomposition to decorrelate the feature space which is otherwise too heavily influenced by the skewed topic distribution of Web corpora

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201
    corecore