1,219 research outputs found

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    Salient Object Detection in Video using Deep Non-Local Neural Networks

    Full text link
    Detection of salient objects in image and video is of great importance in many computer vision applications. In spite of the fact that the state of the art in saliency detection for still images has been changed substantially over the last few years, there have been few improvements in video saliency detection. This paper investigates the use of recently introduced non-local neural networks in video salient object detection. Non-local neural networks are applied to capture global dependencies and hence determine the salient objects. The effect of non-local operations is studied separately on static and dynamic saliency detection in order to exploit both appearance and motion features. A novel deep non-local neural network architecture is introduced for video salient object detection and tested on two well-known datasets DAVIS and FBMS. The experimental results show that the proposed algorithm outperforms state-of-the-art video saliency detection methods.Comment: Submitted to Journal of Visual Communication and Image Representatio

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Two-stream Collaborative Learning with Spatial-Temporal Attention for Video Classification

    Full text link
    Video classification is highly important with wide applications, such as video search and intelligent surveillance. Video naturally consists of static and motion information, which can be represented by frame and optical flow. Recently, researchers generally adopt the deep networks to capture the static and motion information \textbf{\emph{separately}}, which mainly has two limitations: (1) Ignoring the coexistence relationship between spatial and temporal attention, while they should be jointly modelled as the spatial and temporal evolutions of video, thus discriminative video features can be extracted.(2) Ignoring the strong complementarity between static and motion information coexisted in video, while they should be collaboratively learned to boost each other. For addressing the above two limitations, this paper proposes the approach of two-stream collaborative learning with spatial-temporal attention (TCLSTA), which consists of two models: (1) Spatial-temporal attention model: The spatial-level attention emphasizes the salient regions in frame, and the temporal-level attention exploits the discriminative frames in video. They are jointly learned and mutually boosted to learn the discriminative static and motion features for better classification performance. (2) Static-motion collaborative model: It not only achieves mutual guidance on static and motion information to boost the feature learning, but also adaptively learns the fusion weights of static and motion streams, so as to exploit the strong complementarity between static and motion information to promote video classification. Experiments on 4 widely-used datasets show that our TCLSTA approach achieves the best performance compared with more than 10 state-of-the-art methods.Comment: 14 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technolog

    Motion-Appearance Interactive Encoding for Object Segmentation in Unconstrained Videos

    Full text link
    We present a novel method of integrating motion and appearance cues for foreground object segmentation in unconstrained videos. Unlike conventional methods encoding motion and appearance patterns individually, our method puts particular emphasis on their mutual assistance. Specifically, we propose using an interactively constrained encoding (ICE) scheme to incorporate motion and appearance patterns into a graph that leads to a spatiotemporal energy optimization. The reason of utilizing ICE is that both motion and appearance cues for the same target share underlying correlative structure, thus can be exploited in a deeply collaborative manner. We perform ICE not only in the initialization but also in the refinement stage of a two-layer framework for object segmentation. This scheme allows our method to consistently capture structural patterns about object perceptions throughout the whole framework. Our method can be operated on superpixels instead of raw pixels to reduce the number of graph nodes by two orders of magnitude. Moreover, we propose to partially explore the multi-object localization problem with inter-occlusion by weighted bipartite graph matching. Comprehensive experiments on three benchmark datasets (i.e., SegTrack, MOViCS, and GaTech) demonstrate the effectiveness of our approach compared with extensive state-of-the-art methods.Comment: 11 pages, 7 figure

    A Review of Co-saliency Detection Technique: Fundamentals, Applications, and Challenges

    Full text link
    Co-saliency detection is a newly emerging and rapidly growing research area in computer vision community. As a novel branch of visual saliency, co-saliency detection refers to the discovery of common and salient foregrounds from two or more relevant images, and can be widely used in many computer vision tasks. The existing co-saliency detection algorithms mainly consist of three components: extracting effective features to represent the image regions, exploring the informative cues or factors to characterize co-saliency, and designing effective computational frameworks to formulate co-saliency. Although numerous methods have been developed, the literature is still lacking a deep review and evaluation of co-saliency detection techniques. In this paper, we aim at providing a comprehensive review of the fundamentals, challenges, and applications of co-saliency detection. Specifically, we provide an overview of some related computer vision works, review the history of co-saliency detection, summarize and categorize the major algorithms in this research area, discuss some open issues in this area, present the potential applications of co-saliency detection, and finally point out some unsolved challenges and promising future works. We expect this review to be beneficial to both fresh and senior researchers in this field, and give insights to researchers in other related areas regarding the utility of co-saliency detection algorithms.Comment: 28 pages, 12 figures, 3 table

    Towards Storytelling from Visual Lifelogging: An Overview

    Full text link
    Visual lifelogging consists of acquiring images that capture the daily experiences of the user by wearing a camera over a long period of time. The pictures taken offer considerable potential for knowledge mining concerning how people live their lives, hence, they open up new opportunities for many potential applications in fields including healthcare, security, leisure and the quantified self. However, automatically building a story from a huge collection of unstructured egocentric data presents major challenges. This paper provides a thorough review of advances made so far in egocentric data analysis, and in view of the current state of the art, indicates new lines of research to move us towards storytelling from visual lifelogging.Comment: 16 pages, 11 figures, Submitted to IEEE Transactions on Human-Machine System

    Review of Visual Saliency Detection with Comprehensive Information

    Full text link
    Visual saliency detection model simulates the human visual system to perceive the scene, and has been widely used in many vision tasks. With the acquisition technology development, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. Co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discission are conducted to provide a holistic overview of different saliency detection methods.Comment: 18 pages, 11 figures, 7 tables, Accepted by IEEE Transactions on Circuits and Systems for Video Technology 2018, https://rmcong.github.io

    Advances in Human Action Recognition: A Survey

    Full text link
    Human action recognition has been an important topic in computer vision due to its many applications such as video surveillance, human machine interaction and video retrieval. One core problem behind these applications is automatically recognizing low-level actions and high-level activities of interest. The former is usually the basis for the latter. This survey gives an overview of the most recent advances in human action recognition during the past several years, following a well-formed taxonomy proposed by a previous survey. From this state-of-the-art survey, researchers can view a panorama of progress in this area for future research

    Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction

    Full text link
    Computational saliency models for still images have gained significant popularity in recent years. Saliency prediction from videos, on the other hand, has received relatively little interest from the community. Motivated by this, in this work, we study the use of deep learning for dynamic saliency prediction and propose the so-called spatio-temporal saliency networks. The key to our models is the architecture of two-stream networks where we investigate different fusion mechanisms to integrate spatial and temporal information. We evaluate our models on the DIEM and UCF-Sports datasets and present highly competitive results against the existing state-of-the-art models. We also carry out some experiments on a number of still images from the MIT300 dataset by exploiting the optical flow maps predicted from these images. Our results show that considering inherent motion information in this way can be helpful for static saliency estimation
    corecore