27 research outputs found

    Semantic Human Matting

    Full text link
    Human matting, high quality extraction of humans from natural images, is crucial for a wide variety of applications. Since the matting problem is severely under-constrained, most previous methods require user interactions to take user designated trimaps or scribbles as constraints. This user-in-the-loop nature makes them difficult to be applied to large scale data or time-sensitive scenarios. In this paper, instead of using explicit user input constraints, we employ implicit semantic constraints learned from data and propose an automatic human matting algorithm (SHM). SHM is the first algorithm that learns to jointly fit both semantic information and high quality details with deep networks. In practice, simultaneously learning both coarse semantics and fine details is challenging. We propose a novel fusion strategy which naturally gives a probabilistic estimation of the alpha matte. We also construct a very large dataset with high quality annotations consisting of 35,513 unique foregrounds to facilitate the learning and evaluation of human matting. Extensive experiments on this dataset and plenty of real images show that SHM achieves comparable results with state-of-the-art interactive matting methods.Comment: ACM Multimedia 201

    Boosting Semantic Human Matting with Coarse Annotations

    Full text link
    Semantic human matting aims to estimate the per-pixel opacity of the foreground human regions. It is quite challenging and usually requires user interactive trimaps and plenty of high quality annotated data. Annotating such kind of data is labor intensive and requires great skills beyond normal users, especially considering the very detailed hair part of humans. In contrast, coarse annotated human dataset is much easier to acquire and collect from the public dataset. In this paper, we propose to use coarse annotated data coupled with fine annotated data to boost end-to-end semantic human matting without trimaps as extra input. Specifically, we train a mask prediction network to estimate the coarse semantic mask using the hybrid data, and then propose a quality unification network to unify the quality of the previous coarse mask outputs. A matting refinement network takes in the unified mask and the input image to predict the final alpha matte. The collected coarse annotated dataset enriches our dataset significantly, allows generating high quality alpha matte for real images. Experimental results show that the proposed method performs comparably against state-of-the-art methods. Moreover, the proposed method can be used for refining coarse annotated public dataset, as well as semantic segmentation methods, which reduces the cost of annotating high quality human data to a great extent

    Inductive Guided Filter: Real-time Deep Image Matting with Weakly Annotated Masks on Mobile Devices

    Full text link
    Recently, significant progress has been achieved in deep image matting. Most of the classical image matting methods are time-consuming and require an ideal trimap which is difficult to attain in practice. A high efficient image matting method based on a weakly annotated mask is in demand for mobile applications. In this paper, we propose a novel method based on Deep Learning and Guided Filter, called Inductive Guided Filter, which can tackle the real-time general image matting task on mobile devices. We design a lightweight hourglass network to parameterize the original Guided Filter method that takes an image and a weakly annotated mask as input. Further, the use of Gabor loss is proposed for training networks for complicated textures in image matting. Moreover, we create an image matting dataset MAT-2793 with a variety of foreground objects. Experimental results demonstrate that our proposed method massively reduces running time with robust accuracy

    Salient Image Matting

    Full text link
    In this paper, we propose an image matting framework called Salient Image Matting to estimate the per-pixel opacity value of the most salient foreground in an image. To deal with a large amount of semantic diversity in images, a trimap is conventionally required as it provides important guidance about object semantics to the matting process. However, creating a good trimap is often expensive and timeconsuming. The SIM framework simultaneously deals with the challenge of learning a wide range of semantics and salient object types in a fully automatic and an end to end manner. Specifically, our framework is able to produce accurate alpha mattes for a wide range of foreground objects and cases where the foreground class, such as human, appears in a very different context than the train data directly from an RGB input. This is done by employing a salient object detection model to produce a trimap of the most salient object in the image in order to guide the matting model about higher-level object semantics. Our framework leverages large amounts of coarse annotations coupled with a heuristic trimap generation scheme to train the trimap prediction network so it can produce trimaps for arbitrary foregrounds. Moreover, we introduce a multi-scale fusion architecture for the task of matting to better capture finer, low-level opacity semantics. With high-level guidance provided by the trimap network, our framework requires only a fraction of expensive matting data as compared to other automatic methods while being able to produce alpha mattes for a diverse range of inputs. We demonstrate our framework on a range of diverse images and experimental results show our framework compares favourably against state of art matting methods without the need for a trima

    Boundary-Aware Network for Fast and High-Accuracy Portrait Segmentation

    Full text link
    Compared with other semantic segmentation tasks, portrait segmentation requires both higher precision and faster inference speed. However, this problem has not been well studied in previous works. In this paper, we propose a lightweight network architecture, called Boundary-Aware Network (BANet) which selectively extracts detail information in boundary area to make high-quality segmentation output with real-time( >25FPS) speed. In addition, we design a new loss function called refine loss which supervises the network with image level gradient information. Our model is able to produce finer segmentation results which has richer details than annotations

    Improved Image Matting via Real-time User Clicks and Uncertainty Estimation

    Full text link
    Image matting is a fundamental and challenging problem in computer vision and graphics. Most existing matting methods leverage a user-supplied trimap as an auxiliary input to produce good alpha matte. However, obtaining high-quality trimap itself is arduous, thus restricting the application of these methods. Recently, some trimap-free methods have emerged, however, the matting quality is still far behind the trimap-based methods. The main reason is that, without the trimap guidance in some cases, the target network is ambiguous about which is the foreground target. In fact, choosing the foreground is a subjective procedure and depends on the user's intention. To this end, this paper proposes an improved deep image matting framework which is trimap-free and only needs several user click interactions to eliminate the ambiguity. Moreover, we introduce a new uncertainty estimation module that can predict which parts need polishing and a following local refinement module. Based on the computation budget, users can choose how many local parts to improve with the uncertainty guidance. Quantitative and qualitative results show that our method performs better than existing trimap-free methods and comparably to state-of-the-art trimap-based methods with minimal user effort.Comment: Accepted by IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 202

    Alpha Matte Generation from Single Input for Portrait Matting

    Full text link
    Portrait matting is an important research problem with a wide range of applications, such as video conference app, image/video editing, and post-production. The goal is to predict an alpha matte that identifies the effect of each pixel on the foreground subject. Traditional approaches and most of the existing works utilized an additional input, e.g., trimap, background image, to predict alpha matte. However, providing additional input is not always practical. Besides, models are too sensitive to these additional inputs. In this paper, we introduce an additional input-free approach to perform portrait matting using Generative Adversarial Nets (GANs). We divide the main task into two subtasks. For this, we propose a segmentation network for the person segmentation and the alpha generation network for alpha matte prediction. While the segmentation network takes an input image and produces a coarse segmentation map, the alpha generation network utilizes the same input image as well as a coarse segmentation map that is produced by the segmentation network to predict the alpha matte. Besides, we present a segmentation encoding block to downsample the coarse segmentation map and provide feature representation to the residual block. Furthermore, we propose border loss to penalize only the borders of the subject separately which is more likely to be challenging and we also adapt perceptual loss for portrait matting. To train the proposed system, we combine two different popular training datasets to improve the amount of data as well as diversity to address domain shift problems in the inference time. We tested our model on three different benchmark datasets, namely Adobe Image Matting dataset, Portrait Matting dataset, and Distinctions dataset. The proposed method outperformed the MODNet method that also takes a single input

    Automatically Extract the Semi-transparent Motion-blurred Hand from a Single Image

    Full text link
    When we use video chat, video game, or other video applications, motion-blurred hands often appear. Accurately extracting these hands is very useful for video editing and behavior analysis. However, existing motion-blurred object extraction methods either need user interactions, such as user supplied trimaps and scribbles, or need additional information, such as background images. In this paper, a novel method which can automatically extract the semi-transparent motion-blurred hand just according to the original RGB image is proposed. The proposed method separates the extraction task into two subtasks: alpha matte prediction and foreground prediction. These two subtasks are implemented by Xception based encoder-decoder networks. The extracted motion-blurred hand images can be calculated by multiplying the predicted alpha mattes and foreground images. Experiments on synthetic and real datasets show that the proposed method has promising performance

    Bridging Composite and Real: Towards End-to-end Deep Image Matting

    Full text link
    Extracting accurate foregrounds from natural images benefits many downstream applications such as film production and augmented reality. However, the furry characteristics and various appearance of the foregrounds, e.g., animal and portrait, challenge existing matting methods, which usually require extra user inputs such as trimap or scribbles. To resolve these problems, we study the distinct roles of semantics and details for image matting and decompose the task into two parallel sub-tasks: high-level semantic segmentation and low-level details matting. Specifically, we propose a novel Glance and Focus Matting network (GFM), which employs a shared encoder and two separate decoders to learn both tasks in a collaborative manner for end-to-end natural image matting. Besides, due to the limitation of available natural images in the matting task, previous methods typically adopt composite images for training and evaluation, which result in limited generalization ability on real-world images. In this paper, we investigate the domain gap issue between composite images and real-world images systematically by conducting comprehensive analyses of various discrepancies between the foreground and background images. We find that a carefully designed composition route RSSN that aims to reduce the discrepancies can lead to a better model with remarkable generalization ability. Furthermore, we provide a benchmark containing 2,000 high-resolution real-world animal images and 10,000 portrait images along with their manually labeled alpha mattes to serve as a test bed for evaluating matting model's generalization ability on real-world images. Comprehensive empirical studies have demonstrated that GFM outperforms state-of-the-art methods and effectively reduces the generalization error. The code and the datasets will be released at https://github.com/JizhiziLi/GFM.Comment: Accepted by the International Journal of Computer Vision (IJCV). Both the datasets and source code are available at https://github.com/JizhiziLi/GF

    PP-Matting: High-Accuracy Natural Image Matting

    Full text link
    Natural image matting is a fundamental and challenging computer vision task. It has many applications in image editing and composition. Recently, deep learning-based approaches have achieved great improvements in image matting. However, most of them require a user-supplied trimap as an auxiliary input, which limits the matting applications in the real world. Although some trimap-free approaches have been proposed, the matting quality is still unsatisfactory compared to trimap-based ones. Without the trimap guidance, the matting models suffer from foreground-background ambiguity easily, and also generate blurry details in the transition area. In this work, we propose PP-Matting, a trimap-free architecture that can achieve high-accuracy natural image matting. Our method applies a high-resolution detail branch (HRDB) that extracts fine-grained details of the foreground with keeping feature resolution unchanged. Also, we propose a semantic context branch (SCB) that adopts a semantic segmentation subtask. It prevents the detail prediction from local ambiguity caused by semantic context missing. In addition, we conduct extensive experiments on two well-known benchmarks: Composition-1k and Distinctions-646. The results demonstrate the superiority of PP-Matting over previous methods. Furthermore, we provide a qualitative evaluation of our method on human matting which shows its outstanding performance in the practical application. The code and pre-trained models will be available at PaddleSeg: https://github.com/PaddlePaddle/PaddleSeg
    corecore