2,584 research outputs found

    Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers

    Full text link
    In this paper we propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for some applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our method outperforms existing exemplar-free state-of-the-art methods without the need to store any representative exemplars of past tasks

    A Survey on Continual Semantic Segmentation: Theory, Challenge, Method and Application

    Full text link
    Continual learning, also known as incremental learning or life-long learning, stands at the forefront of deep learning and AI systems. It breaks through the obstacle of one-way training on close sets and enables continuous adaptive learning on open-set conditions. In the recent decade, continual learning has been explored and applied in multiple fields especially in computer vision covering classification, detection and segmentation tasks. Continual semantic segmentation (CSS), of which the dense prediction peculiarity makes it a challenging, intricate and burgeoning task. In this paper, we present a review of CSS, committing to building a comprehensive survey on problem formulations, primary challenges, universal datasets, neoteric theories and multifarious applications. Concretely, we begin by elucidating the problem definitions and primary challenges. Based on an in-depth investigation of relevant approaches, we sort out and categorize current CSS models into two main branches including \textit{data-replay} and \textit{data-free} sets. In each branch, the corresponding approaches are similarity-based clustered and thoroughly analyzed, following qualitative comparison and quantitative reproductions on relevant datasets. Besides, we also introduce four CSS specialities with diverse application scenarios and development tendencies. Furthermore, we develop a benchmark for CSS encompassing representative references, evaluation results and reproductions, which is available at~\url{https://github.com/YBIO/SurveyCSS}. We hope this survey can serve as a reference-worthy and stimulating contribution to the advancement of the life-long learning field, while also providing valuable perspectives for related fields.Comment: 20 pages, 12 figures. Undergoing Revie

    FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly Supervised Object Localization

    Full text link
    This work addresses the task of class-incremental weakly supervised object localization (CI-WSOL). The goal is to incrementally learn object localization for novel classes using only image-level annotations while retaining the ability to localize previously learned classes. This task is important because annotating bounding boxes for every new incoming data is expensive, although object localization is crucial in various applications. To the best of our knowledge, we are the first to address this task. Thus, we first present a strong baseline method for CI-WSOL by adapting the strategies of class-incremental classifiers to mitigate catastrophic forgetting. These strategies include applying knowledge distillation, maintaining a small data set from previous tasks, and using cosine normalization. We then propose the feature drift compensation network to compensate for the effects of feature drifts on class scores and localization maps. Since updating network parameters to learn new tasks causes feature drifts, compensating for the final outputs is necessary. Finally, we evaluate our proposed method by conducting experiments on two publicly available datasets (ImageNet-100 and CUB-200). The experimental results demonstrate that the proposed method outperforms other baseline methods.Comment: ACM Multimedia 202

    ICICLE: Interpretable Class Incremental Continual Learning

    Full text link
    Continual learning enables incremental learning of new tasks without forgetting those previously learned, resulting in positive knowledge transfer that can enhance performance on both new and old tasks. However, continual learning poses new challenges for interpretability, as the rationale behind model predictions may change over time, leading to interpretability concept drift. We address this problem by proposing Interpretable Class-InCremental LEarning (ICICLE), an exemplar-free approach that adopts a prototypical part-based approach. It consists of three crucial novelties: interpretability regularization that distills previously learned concepts while preserving user-friendly positive reasoning; proximity-based prototype initialization strategy dedicated to the fine-grained setting; and task-recency bias compensation devoted to prototypical parts. Our experimental results demonstrate that ICICLE reduces the interpretability concept drift and outperforms the existing exemplar-free methods of common class-incremental learning when applied to concept-based models. We make the code available.Comment: Under review, code will be shared after the acceptanc

    Multivariate Prototype Representation for Domain-Generalized Incremental Learning

    Full text link
    Deep learning models suffer from catastrophic forgetting when being fine-tuned with samples of new classes. This issue becomes even more pronounced when faced with the domain shift between training and testing data. In this paper, we study the critical and less explored Domain-Generalized Class-Incremental Learning (DGCIL). We design a DGCIL approach that remembers old classes, adapts to new classes, and can classify reliably objects from unseen domains. Specifically, our loss formulation maintains classification boundaries and suppresses the domain-specific information of each class. With no old exemplars stored, we use knowledge distillation and estimate old class prototype drift as incremental training advances. Our prototype representations are based on multivariate Normal distributions whose means and covariances are constantly adapted to changing model features to represent old classes well by adapting to the feature space drift. For old classes, we sample pseudo-features from the adapted Normal distributions with the help of Cholesky decomposition. In contrast to previous pseudo-feature sampling strategies that rely solely on average mean prototypes, our method excels at capturing varying semantic information. Experiments on several benchmarks validate our claims

    Steering Prototypes with Prompt-tuning for Rehearsal-free Continual Learning

    Full text link
    In the context of continual learning, prototypes-as representative class embeddings-offer advantages in memory conservation and the mitigation of catastrophic forgetting. However, challenges related to semantic drift and prototype interference persist. In this study, we introduce the Contrastive Prototypical Prompt (CPP) approach. Through task-specific prompt-tuning, underpinned by a contrastive learning objective, we effectively address both aforementioned challenges. Our evaluations on four challenging class-incremental benchmarks reveal that CPP achieves a significant 4% to 6% improvement over state-of-the-art methods. Importantly, CPP operates without a rehearsal buffer and narrows the performance divergence between continual and offline joint-learning, suggesting an innovative scheme for Transformer-based continual learning systems.Comment: Accept to WACV 2024. Code is available at https://github.com/LzVv123456/Contrastive-Prototypical-Promp

    DiffusePast: Diffusion-based Generative Replay for Class Incremental Semantic Segmentation

    Full text link
    The Class Incremental Semantic Segmentation (CISS) extends the traditional segmentation task by incrementally learning newly added classes. Previous work has introduced generative replay, which involves replaying old class samples generated from a pre-trained GAN, to address the issues of catastrophic forgetting and privacy concerns. However, the generated images lack semantic precision and exhibit out-of-distribution characteristics, resulting in inaccurate masks that further degrade the segmentation performance. To tackle these challenges, we propose DiffusePast, a novel framework featuring a diffusion-based generative replay module that generates semantically accurate images with more reliable masks guided by different instructions (e.g., text prompts or edge maps). Specifically, DiffusePast introduces a dual-generator paradigm, which focuses on generating old class images that align with the distribution of downstream datasets while preserving the structure and layout of the original images, enabling more precise masks. To adapt to the novel visual concepts of newly added classes continuously, we incorporate class-wise token embedding when updating the dual-generator. Moreover, we assign adequate pseudo-labels of old classes to the background pixels in the new step images, further mitigating the forgetting of previously learned knowledge. Through comprehensive experiments, our method demonstrates competitive performance across mainstream benchmarks, striking a better balance between the performance of old and novel classes.Comment: e.g.: 13 pages, 7 figure
    • …
    corecore