115,992 research outputs found
RDF/S)XML Linguistic Annotation of Semantic Web Pages
Although with the Semantic Web initiative much research on web pages semantic annotation has already done by AI researchers, linguistic text annotation, including the semantic one, was originally developed in Corpus Linguistics and its results have been somehow neglected by AI. ..
Bridging the gap between social tagging and semantic annotation: E.D. the Entity Describer
Semantic annotation enables the development of efficient computational methods for analyzing and interacting with information, thus maximizing its value. With the already substantial and constantly expanding data generation capacity of the life sciences as well as the concomitant increase in the knowledge distributed in scientific articles, new ways to produce semantic annotations of this information are crucial. While automated techniques certainly facilitate the process, manual annotation remains the gold standard in most domains. In this manuscript, we describe a prototype mass-collaborative semantic annotation system that, by distributing the annotation workload across the broad community of biomedical researchers, may help to produce the volume of meaningful annotations needed by modern biomedical science. We present E.D., the Entity Describer, a mashup of the Connotea social tagging system, an index of semantic web-accessible controlled vocabularies, and a new public RDF database for storing social semantic annotations
Living with the Semantic Gap: Experiences and remedies in the context of medical imaging
Semantic annotation of images is a key concern for the newly emerged applications of semantic multimedia. Machine processable descriptions of images make it possible to automate a variety of tasks from search and discovery to composition and collage of image data bases. However, the ever occurring problem of the semantic gap between the low level descriptors and the high level interpretation of an image poses new challenges and needs to be addressed before the full potential of semantic multimedia can be realised. We explore the possibilities and lessons learnt with applied semantic multimedia from our engagement with medical imaging where we deployed ontologies and a novel distributed architecture to provide semantic annotation, decision support and methods for tackling the semantic gap problem
A Machine Learning Based Analytical Framework for Semantic Annotation Requirements
The Semantic Web is an extension of the current web in which information is
given well-defined meaning. The perspective of Semantic Web is to promote the
quality and intelligence of the current web by changing its contents into
machine understandable form. Therefore, semantic level information is one of
the cornerstones of the Semantic Web. The process of adding semantic metadata
to web resources is called Semantic Annotation. There are many obstacles
against the Semantic Annotation, such as multilinguality, scalability, and
issues which are related to diversity and inconsistency in content of different
web pages. Due to the wide range of domains and the dynamic environments that
the Semantic Annotation systems must be performed on, the problem of automating
annotation process is one of the significant challenges in this domain. To
overcome this problem, different machine learning approaches such as supervised
learning, unsupervised learning and more recent ones like, semi-supervised
learning and active learning have been utilized. In this paper we present an
inclusive layered classification of Semantic Annotation challenges and discuss
the most important issues in this field. Also, we review and analyze machine
learning applications for solving semantic annotation problems. For this goal,
the article tries to closely study and categorize related researches for better
understanding and to reach a framework that can map machine learning techniques
into the Semantic Annotation challenges and requirements
A framework for automatic semantic video annotation
The rapidly increasing quantity of publicly available videos has driven research into developing automatic tools for indexing, rating, searching and retrieval. Textual semantic representations, such as tagging, labelling and annotation, are often important factors in the process of indexing any video, because of their user-friendly way of representing the semantics appropriate for search and retrieval. Ideally, this annotation should be inspired by the human cognitive way of perceiving and of describing videos. The difference between the low-level visual contents and the corresponding human perception is referred to as the ‘semantic gap’. Tackling this gap is even harder in the case of unconstrained videos, mainly due to the lack of any previous information about the analyzed video on the one hand, and the huge amount of generic knowledge required on the other. This paper introduces a framework for the Automatic Semantic Annotation of unconstrained videos. The proposed framework utilizes two non-domain-specific layers: low-level visual similarity matching, and an annotation analysis that employs commonsense knowledgebases. Commonsense ontology is created by incorporating multiple-structured semantic relationships. Experiments and black-box tests are carried out on standard video databases for action recognition and video information retrieval. White-box tests examine the performance of the individual intermediate layers of the framework, and the evaluation of the results and the statistical analysis show that integrating visual similarity matching with commonsense semantic relationships provides an effective approach to automated video annotation
Semantic spaces revisited: investigating the performance of auto-annotation and semantic retrieval using semantic spaces
Semantic spaces encode similarity relationships between objects as a function of position in a mathematical space. This paper discusses three different formulations for building semantic spaces which allow the automatic-annotation and semantic retrieval of images. The models discussed in this paper require that the image content be described in the form of a series of visual-terms, rather than as a continuous feature-vector. The paper also discusses how these term-based models compare to the latest state-of-the-art continuous feature models for auto-annotation and retrieval
brat: a Web-based Tool for NLP-Assisted Text Annotation
We introduce the brat rapid annotation tool (BRAT), an intuitive web-based tool for text annotation supported by Natural Language Processing (NLP) technology. BRAT has been developed for rich structured annotation for a variety of NLP tasks and aims to support manual curation efforts and increase annotator productivity using NLP techniques. We discuss several case studies of real-world annotation projects using pre-release versions of BRAT and present an evaluation of annotation assisted by semantic class disambiguation on a multicategory entity mention annotation task, showing a 15 % decrease in total annotation time. BRAT is available under an opensource license from
Text-based Semantic Annotation Service for Multimedia Content in the Esperonto project
Within the Esperonto project, an integration of NLP, ontologies and other knowledge bases, is being performed with the goal to implement a semantic annotation service that upgrades the actual Web towards the emerging Semantic Web. Research is being currently conducted on how to apply the Esperonto semantic annotation service to text material associated with still images in web pages. In doing so, the project will allow for semantic querying of still images in the web, but also (automatically) create a large set of text-based semantic annotations of still images, which can be used by the Multimedia community in order to support the task of content indexing of image material, possibly combining the Esperonto type of annotations with the annotations resulting from image analysis
The development of non-coding RNA ontology
Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data
- …
