7,485 research outputs found

    Seeing voices and hearing voices: learning discriminative embeddings using cross-modal self-supervision

    Full text link
    The goal of this work is to train discriminative cross-modal embeddings without access to manually annotated data. Recent advances in self-supervised learning have shown that effective representations can be learnt from natural cross-modal synchrony. We build on earlier work to train embeddings that are more discriminative for uni-modal downstream tasks. To this end, we propose a novel training strategy that not only optimises metrics across modalities, but also enforces intra-class feature separation within each of the modalities. The effectiveness of the method is demonstrated on two downstream tasks: lip reading using the features trained on audio-visual synchronisation, and speaker recognition using the features trained for cross-modal biometric matching. The proposed method outperforms state-of-the-art self-supervised baselines by a signficant margin.Comment: Under submission as a conference pape

    Perfect match: Improved cross-modal embeddings for audio-visual synchronisation

    Full text link
    This paper proposes a new strategy for learning powerful cross-modal embeddings for audio-to-video synchronization. Here, we set up the problem as one of cross-modal retrieval, where the objective is to find the most relevant audio segment given a short video clip. The method builds on the recent advances in learning representations from cross-modal self-supervision. The main contributions of this paper are as follows: (1) we propose a new learning strategy where the embeddings are learnt via a multi-way matching problem, as opposed to a binary classification (matching or non-matching) problem as proposed by recent papers; (2) we demonstrate that performance of this method far exceeds the existing baselines on the synchronization task; (3) we use the learnt embeddings for visual speech recognition in self-supervision, and show that the performance matches the representations learnt end-to-end in a fully-supervised manner.Comment: Preprint. Work in progres

    Self-supervised learning of a facial attribute embedding from video

    Full text link
    We propose a self-supervised framework for learning facial attributes by simply watching videos of a human face speaking, laughing, and moving over time. To perform this task, we introduce a network, Facial Attributes-Net (FAb-Net), that is trained to embed multiple frames from the same video face-track into a common low-dimensional space. With this approach, we make three contributions: first, we show that the network can leverage information from multiple source frames by predicting confidence/attention masks for each frame; second, we demonstrate that using a curriculum learning regime improves the learned embedding; finally, we demonstrate that the network learns a meaningful face embedding that encodes information about head pose, facial landmarks and facial expression, i.e. facial attributes, without having been supervised with any labelled data. We are comparable or superior to state-of-the-art self-supervised methods on these tasks and approach the performance of supervised methods.Comment: To appear in BMVC 2018. Supplementary material can be found at http://www.robots.ox.ac.uk/~vgg/research/unsup_learn_watch_faces/fabnet.htm

    Cross Pixel Optical Flow Similarity for Self-Supervised Learning

    Full text link
    We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks

    Time-Contrastive Networks: Self-Supervised Learning from Video

    Full text link
    We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a metric learning loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. In other words, the model simultaneously learns to recognize what is common between different-looking images, and what is different between similar-looking images. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at https://sermanet.github.io/imitat

    Objects that Sound

    Full text link
    In this paper our objectives are, first, networks that can embed audio and visual inputs into a common space that is suitable for cross-modal retrieval; and second, a network that can localize the object that sounds in an image, given the audio signal. We achieve both these objectives by training from unlabelled video using only audio-visual correspondence (AVC) as the objective function. This is a form of cross-modal self-supervision from video. To this end, we design new network architectures that can be trained for cross-modal retrieval and localizing the sound source in an image, by using the AVC task. We make the following contributions: (i) show that audio and visual embeddings can be learnt that enable both within-mode (e.g. audio-to-audio) and between-mode retrieval; (ii) explore various architectures for the AVC task, including those for the visual stream that ingest a single image, or multiple images, or a single image and multi-frame optical flow; (iii) show that the semantic object that sounds within an image can be localized (using only the sound, no motion or flow information); and (iv) give a cautionary tale on how to avoid undesirable shortcuts in the data preparation.Comment: Appears in: European Conference on Computer Vision (ECCV) 201
    • …
    corecore