16 research outputs found

    Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks

    Full text link
    While the use of bottom-up local operators in convolutional neural networks (CNNs) matches well some of the statistics of natural images, it may also prevent such models from capturing contextual long-range feature interactions. In this work, we propose a simple, lightweight approach for better context exploitation in CNNs. We do so by introducing a pair of operators: gather, which efficiently aggregates feature responses from a large spatial extent, and excite, which redistributes the pooled information to local features. The operators are cheap, both in terms of number of added parameters and computational complexity, and can be integrated directly in existing architectures to improve their performance. Experiments on several datasets show that gather-excite can bring benefits comparable to increasing the depth of a CNN at a fraction of the cost. For example, we find ResNet-50 with gather-excite operators is able to outperform its 101-layer counterpart on ImageNet with no additional learnable parameters. We also propose a parametric gather-excite operator pair which yields further performance gains, relate it to the recently-introduced Squeeze-and-Excitation Networks, and analyse the effects of these changes to the CNN feature activation statistics.Comment: NeurIPS 201

    SFNet: Learning Object-aware Semantic Correspondence

    Get PDF
    We address the problem of semantic correspondence, that is, establishing a dense flow field between images depicting different instances of the same object or scene category. We propose to use images annotated with binary foreground masks and subjected to synthetic geometric deformations to train a convolutional neural network (CNN) for this task. Using these masks as part of the supervisory signal offers a good compromise between semantic flow methods, where the amount of training data is limited by the cost of manually selecting point correspondences, and semantic alignment ones, where the regression of a single global geometric transformation between images may be sensitive to image-specific details such as background clutter. We propose a new CNN architecture, dubbed SFNet, which implements this idea. It leverages a new and differentiable version of the argmax function for end-to-end training, with a loss that combines mask and flow consistency with smoothness terms. Experimental results demonstrate the effectiveness of our approach, which significantly outperforms the state of the art on standard benchmarks.Comment: cvpr 2019 oral pape

    Unsupervised Intuitive Physics from Visual Observations

    Full text link
    While learning models of intuitive physics is an increasingly active area of research, current approaches still fall short of natural intelligences in one important regard: they require external supervision, such as explicit access to physical states, at training and sometimes even at test times. Some authors have relaxed such requirements by supplementing the model with an handcrafted physical simulator. Still, the resulting methods are unable to automatically learn new complex environments and to understand physical interactions within them. In this work, we demonstrated for the first time learning such predictors directly from raw visual observations and without relying on simulators. We do so in two steps: first, we learn to track mechanically-salient objects in videos using causality and equivariance, two unsupervised learning principles that do not require auto-encoding. Second, we demonstrate that the extracted positions are sufficient to successfully train visual motion predictors that can take the underlying environment into account. We validate our predictors on synthetic datasets; then, we introduce a new dataset, ROLL4REAL, consisting of real objects rolling on complex terrains (pool table, elliptical bowl, and random height-field). We show that in all such cases it is possible to learn reliable extrapolators of the object trajectories from raw videos alone, without any form of external supervision and with no more prior knowledge than the choice of a convolutional neural network architecture

    Correspondence Networks with Adaptive Neighbourhood Consensus

    Full text link
    In this paper, we tackle the task of establishing dense visual correspondences between images containing objects of the same category. This is a challenging task due to large intra-class variations and a lack of dense pixel level annotations. We propose a convolutional neural network architecture, called adaptive neighbourhood consensus network (ANC-Net), that can be trained end-to-end with sparse key-point annotations, to handle this challenge. At the core of ANC-Net is our proposed non-isotropic 4D convolution kernel, which forms the building block for the adaptive neighbourhood consensus module for robust matching. We also introduce a simple and efficient multi-scale self-similarity module in ANC-Net to make the learned feature robust to intra-class variations. Furthermore, we propose a novel orthogonal loss that can enforce the one-to-one matching constraint. We thoroughly evaluate the effectiveness of our method on various benchmarks, where it substantially outperforms state-of-the-art methods.Comment: CVPR 2020. Project page: https://ancnet.avlcode.org

    Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features

    Get PDF
    International audienceEstablishing visual correspondences under large intra-class variations requires analyzing images at different levels , from features linked to semantics and context to local patterns, while being invariant to instance-specific details. To tackle these challenges, we represent images by "hyper-pixels" that leverage a small number of relevant features selected among early to late layers of a convolutional neu-ral network. Taking advantage of the condensed features of hyperpixels, we develop an effective real-time matching algorithm based on Hough geometric voting. The proposed method, hyperpixel flow, sets a new state of the art on three standard benchmarks as well as a new dataset, SPair-71k, which contains a significantly larger number of image pairs than existing datasets, with more accurate and richer annotations for in-depth analysis

    From Coarse to Fine: Robust Hierarchical Localization at Large Scale

    Full text link
    Robust and accurate visual localization is a fundamental capability for numerous applications, such as autonomous driving, mobile robotics, or augmented reality. It remains, however, a challenging task, particularly for large-scale environments and in presence of significant appearance changes. State-of-the-art methods not only struggle with such scenarios, but are often too resource intensive for certain real-time applications. In this paper we propose HF-Net, a hierarchical localization approach based on a monolithic CNN that simultaneously predicts local features and global descriptors for accurate 6-DoF localization. We exploit the coarse-to-fine localization paradigm: we first perform a global retrieval to obtain location hypotheses and only later match local features within those candidate places. This hierarchical approach incurs significant runtime savings and makes our system suitable for real-time operation. By leveraging learned descriptors, our method achieves remarkable localization robustness across large variations of appearance and sets a new state-of-the-art on two challenging benchmarks for large-scale localization.Comment: Camera-ready for CVPR 201

    Probabilistic Pixel-Adaptive Refinement Networks

    Full text link
    Encoder-decoder networks have found widespread use in various dense prediction tasks. However, the strong reduction of spatial resolution in the encoder leads to a loss of location information as well as boundary artifacts. To address this, image-adaptive post-processing methods have shown beneficial by leveraging the high-resolution input image(s) as guidance data. We extend such approaches by considering an important orthogonal source of information: the network's confidence in its own predictions. We introduce probabilistic pixel-adaptive convolutions (PPACs), which not only depend on image guidance data for filtering, but also respect the reliability of per-pixel predictions. As such, PPACs allow for image-adaptive smoothing and simultaneously propagating pixels of high confidence into less reliable regions, while respecting object boundaries. We demonstrate their utility in refinement networks for optical flow and semantic segmentation, where PPACs lead to a clear reduction in boundary artifacts. Moreover, our proposed refinement step is able to substantially improve the accuracy on various widely used benchmarks.Comment: To appear at CVPR 202
    corecore