1,089 research outputs found

    Data Augmentation for Sample Efficient and Robust Document Ranking

    Full text link
    Contextual ranking models have delivered impressive performance improvements over classical models in the document ranking task. However, these highly over-parameterized models tend to be data-hungry and require large amounts of data even for fine-tuning. In this paper, we propose data-augmentation methods for effective and robust ranking performance. One of the key benefits of using data augmentation is in achieving sample efficiency or learning effectively when we have only a small amount of training data. We propose supervised and unsupervised data augmentation schemes by creating training data using parts of the relevant documents in the query-document pairs. We then adapt a family of contrastive losses for the document ranking task that can exploit the augmented data to learn an effective ranking model. Our extensive experiments on subsets of the MS MARCO and TREC-DL test sets show that data augmentation, along with the ranking-adapted contrastive losses, results in performance improvements under most dataset sizes. Apart from sample efficiency, we conclusively show that data augmentation results in robust models when transferred to out-of-domain benchmarks. Our performance improvements in in-domain and more prominently in out-of-domain benchmarks show that augmentation regularizes the ranking model and improves its robustness and generalization capability

    FastDocFastDoc: Domain-Specific Fast Pre-training Technique using Document-Level Metadata and Taxonomy

    Full text link
    As the demand for sophisticated Natural Language Processing (NLP) models continues to grow, so does the need for efficient pre-training techniques. Current NLP models undergo resource-intensive pre-training. In response, we introduce FastDocFastDoc (Fast Pre-training Technique using Document-Level Metadata and Taxonomy), a novel approach designed to significantly reduce computational demands. FastDocFastDoc leverages document metadata and domain-specific taxonomy as supervision signals. It involves continual pre-training of an open-domain transformer encoder using sentence-level embeddings, followed by fine-tuning using token-level embeddings. We evaluate FastDocFastDoc on six tasks across nine datasets spanning three distinct domains. Remarkably, FastDocFastDoc achieves remarkable compute reductions of approximately 1,000x, 4,500x, 500x compared to competitive approaches in Customer Support, Scientific, and Legal domains, respectively. Importantly, these efficiency gains do not compromise performance relative to competitive baselines. Furthermore, reduced pre-training data mitigates catastrophic forgetting, ensuring consistent performance in open-domain scenarios. FastDocFastDoc offers a promising solution for resource-efficient pre-training, with potential applications spanning various domains.Comment: 38 pages, 7 figure

    Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures

    Full text link
    Recent advancements in surgical computer vision applications have been driven by fully-supervised methods, primarily using only visual data. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. SurgVLP constructs a new contrastive learning objective to align video clip embeddings with the corresponding multiple text embeddings by bringing them together within a joint latent space. To effectively show the representation capability of the learned joint latent space, we introduce several vision-and-language tasks for surgery, such as text-based video retrieval, temporal activity grounding, and video captioning, as benchmarks for evaluation. We further demonstrate that without using any labeled ground truth, our approach can be employed for traditional vision-only surgical downstream tasks, such as surgical tool, phase, and triplet recognition. The code will be made available at https://github.com/CAMMA-public/SurgVL

    DeSIQ: Towards an Unbiased, Challenging Benchmark for Social Intelligence Understanding

    Full text link
    Social intelligence is essential for understanding and reasoning about human expressions, intents and interactions. One representative benchmark for its study is Social Intelligence Queries (Social-IQ), a dataset of multiple-choice questions on videos of complex social interactions. We define a comprehensive methodology to study the soundness of Social-IQ, as the soundness of such benchmark datasets is crucial to the investigation of the underlying research problem. Our analysis reveals that Social-IQ contains substantial biases, which can be exploited by a moderately strong language model to learn spurious correlations to achieve perfect performance without being given the context or even the question. We introduce DeSIQ, a new challenging dataset, constructed by applying simple perturbations to Social-IQ. Our empirical analysis shows DeSIQ significantly reduces the biases in the original Social-IQ dataset. Furthermore, we examine and shed light on the effect of model size, model style, learning settings, commonsense knowledge, and multi-modality on the new benchmark performance. Our new dataset, observations and findings open up important research questions for the study of social intelligence.Comment: 12 pages, 5 figures, EMNLP 2023 Long Pape
    • …
    corecore