52,501 research outputs found
Self-Supervised Audio-Visual Co-Segmentation
Segmenting objects in images and separating sound sources in audio are
challenging tasks, in part because traditional approaches require large amounts
of labeled data. In this paper we develop a neural network model for visual
object segmentation and sound source separation that learns from natural videos
through self-supervision. The model is an extension of recently proposed work
that maps image pixels to sounds. Here, we introduce a learning approach to
disentangle concepts in the neural networks, and assign semantic categories to
network feature channels to enable independent image segmentation and sound
source separation after audio-visual training on videos. Our evaluations show
that the disentangled model outperforms several baselines in semantic
segmentation and sound source separation.Comment: Accepted to ICASSP 201
CASSL: Curriculum Accelerated Self-Supervised Learning
Recent self-supervised learning approaches focus on using a few thousand data
points to learn policies for high-level, low-dimensional action spaces.
However, scaling this framework for high-dimensional control require either
scaling up the data collection efforts or using a clever sampling strategy for
training. We present a novel approach - Curriculum Accelerated Self-Supervised
Learning (CASSL) - to train policies that map visual information to high-level,
higher- dimensional action spaces. CASSL orders the sampling of training data
based on control dimensions: the learning and sampling are focused on few
control parameters before other parameters. The right curriculum for learning
is suggested by variance-based global sensitivity analysis of the control
space. We apply our CASSL framework to learning how to grasp using an adaptive,
underactuated multi-fingered gripper, a challenging system to control. Our
experimental results indicate that CASSL provides significant improvement and
generalization compared to baseline methods such as staged curriculum learning
(8% increase) and complete end-to-end learning with random exploration (14%
improvement) tested on a set of novel objects
Towards Self-Supervised High Level Sensor Fusion
In this paper, we present a framework to control a self-driving car by fusing
raw information from RGB images and depth maps. A deep neural network
architecture is used for mapping the vision and depth information,
respectively, to steering commands. This fusion of information from two sensor
sources allows to provide redundancy and fault tolerance in the presence of
sensor failures. Even if one of the input sensors fails to produce the correct
output, the other functioning sensor would still be able to maneuver the car.
Such redundancy is crucial in the critical application of self-driving cars.
The experimental results have showed that our method is capable of learning to
use the relevant sensor information even when one of the sensors fail without
any explicit signal
- …
