242,701 research outputs found

    Extranuclear Halpha-emitting complexes in low-z (U)LIRGs: Precursors of tidal dwarf galaxies?

    Full text link
    (Abridged)This paper characterizes the physical and kinematic properties of external massive star-forming regions in a sample of (U)LIRGs. We use high angular resolution ACS images from the HST B and I bands, as well as Halpha-line emission maps obtained with IFS. We find 31 external Halpha-emitting (young star-forming) complexes in 11 (U)LIRGs. These complexes have in general similar sizes, luminosities, and metallicities to extragalactic giant HII regions and TDG candidates found in less luminous mergers and compact groups of galaxies. We assess the mass content and the likelihood of survival as TDGs of the 22 complexes with simple structures in the HST images based on their photometric, structural, and kinematic properties. The dynamical tracers used (radius-sigma and luminosity-sigma diagrams) indicate that most of the complexes might be self-gravitating entities. The resistance to forces from the parent galaxy is studied by considering the tidal mass of the candidate and its relative velocity with respect to the parent galaxy. After combining the results of previous studies of TDG searches in ULIRGs a total of 9 complexes satisfy most of the applied criteria and thus show a high-medium or high likelihood of survival, their total mass likely being compatible with that of dwarf galaxies. They are defined as TDG candidates. We propose that they probably formed more often during the early phases of the interaction. Combining all data for complexes with IFS data where a significant fraction of the system is covered, we infer a TDG production rate of 0.3 candidates with the highest probabilities of survival per system for the (U)LIRGs class. This rate, though, might decrease to 0.1 after the systems in (U)LIRGs have evolved for 10 Gyr, for long-lived TDGs, which would imply that no more than 5-10 % of the overall dwarf population could be of tidal origin.Comment: Accepted for publication in A&A, 21 pages, 8 figures. Typo corrected (article 1111.0468

    Application of the density dependent hadron field theory to neutron star matter

    Get PDF
    The density dependent hadron field (DDRH) theory, previously applied to isospin nuclei and hypernuclei is used to describe β\beta-stable matter and neutron stars under consideration of the complete baryon octet. The meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear matter and extended to hyperons. We examine properties of density dependent interactions derived from the Bonn A and from the Groningen NN potential as well as phenomenological interactions. The consistent treatment of the density dependence introduces rearrangement terms in the expression for the baryon chemical potential. This leads to a more complex condition for the β\beta-equilibrium compared to standard relativistic mean field (RMF) approaches. We find a strong dependence of the equation of state and the particle distribution on the choice of the vertex density dependence. Results for neutron star masses and radii are presented. We find a good agreement with other models for the maximum mass. Radii are smaller compared to RMF models and indicate a closer agreement with results of non-relativistic Brueckner calculations.Comment: 28 pages, 11 figure

    Similar phenomena at different scales: Black Holes, the Sun, Gamma-ray Bursts, Supernovae, Galaxies and Galaxy Clusters

    Get PDF
    Many similar phenomena occur in astrophysical systems with spatial and mass scales different by many orders of magnitudes. For examples, collimated outflows are produced from the Sun, proto-stellar systems, gamma-ray bursts, neutron star and black hole X-ray binaries, and supermassive black holes; various kinds of flares occur from the Sun, stellar coronae, X-ray binaries and active galactic nuclei; shocks and particle acceleration exist in supernova remnants, gamma-ray bursts, clusters of galaxies, etc. In this report I summarize briefly these phenomena and possible physical mechanisms responsible for them. I emphasize the importance of using the Sun as an astrophysical laboratory in studying these physical processes, especially the roles magnetic fields play in them; it is quite likely that magnetic activities dominate the fundamental physical processes in all of these systems. As a case study, I show that X-ray lightcurves from solar flares, black hole binaries and gamma-ray bursts exhibit a common scaling law of non-linear dynamical properties, over a dynamical range of several orders of magnitudes in intensities, implying that many basic X-ray emission nodes or elements are inter-connected over multi-scales. A future high timing and imaging resolution solar X-ray instrument, aimed at isolating and resolving the fundamental elements of solar X-ray lightcurves, may shed new lights onto the fundamental physical mechanisms, which are common in astrophysical systems with vastly different mass and spatial scales. Using the Sun as an astrophysical laboratory, "Applied Solar Astrophysics" will deepen our understanding of many important astrophysical problems.Comment: 22 pages, 13 figures, invited discourse for the 26th IAU GA, Prague, Czech Republic, Aug. 2006, to be published in Vol. 14 IAU Highlights of Astronomy, Ed. K.A. van der Hucht. Revised slightly to match the final submitted version, after incorporating comments and suggestions from several colleagues. A full-resolution version is available on request from the author at [email protected]

    Exploring complex networks by walking on them

    Full text link
    We carry out a comparative study on the problem for a walker searching on several typical complex networks. The search efficiency is evaluated for various strategies. Having no knowledge of the global properties of the underlying networks and the optimal path between any two given nodes, it is found that the best search strategy is the self-avoid random walk. The preferentially self-avoid random walk does not help in improving the search efficiency further. In return, topological information of the underlying networks may be drawn by comparing the results of the different search strategies.Comment: 5 pages, 5 figure

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal

    Full text link
    We use Monte Carlo simulations and free-energy techniques to show that binary solutions of penta- and hexavalent two-dimensional patchy particles can form thermodynamically stable quasicrystals even at very narrow patch widths, provided their patch interactions are chosen in an appropriate way. Such patchy particles can be thought of as a coarse-grained representation of DNA multi-arm `star' motifs, which can be chosen to bond with one another very specifically by tuning the DNA sequences of the protruding arms. We explore several possible design strategies and conclude that DNA star tiles that are designed to interact with one another in a specific but not overly constrained way could potentially be used to construct soft quasicrystals in experiment. We verify that such star tiles can form stable dodecagonal motifs using oxDNA, a realistic coarse-grained model of DNA
    corecore